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Learning Objectives

Review background in Statistical Mechanics:
configuration, ensemble, entropy, heat capacity

Understand the basic assumptions and steps in
Simulated Annealing (SA)

Be able to transform design problems into a
combinatorial optimization problem suitable to
SA

Understand strengths and weaknesses of SA



Heuristics



What Is a Heuristic?

A Heuristic is simply a rule of thumb that hopefully will find a good
answer.

Why use a Heuristic?

— Heuristics are typically used to solve complex (large, nonlinear, non-
convex (i.e. contain local minima)) multivariate combinatorial optimization
problems that are difficult to solve to optimality.

Unlike gradient-based methods in a convex design space, heuristics
are NOT guaranteed to find the true global optimal solution in a single
objective problem, but should find many good solutions (the
mathematician's answer vs. the engineer’'s answer)

Heuristics are good at dealing with local optima without getting stuck
In them while searching for the global optimum.



Types of Heuristics

« Heuristics Often Incorporate Randomization

« Two Special Cases of Heuristics

— Construction Methods

* Must first find a feasible solution and then improve it.
— Improvement Methods

« Start with a feasible solution and just try to improve it.

« 3 Most Common Heuristic Techniques
— Simulated Annealing
— Genetic Algorithms
— Tabu Search
— New Methods: Particle Swarm Optimization, etc...



Origin of Simulated Annealing (SA)

Definition: A heuristic technique that mathematically mirrors the
cooling of a set of atoms to a state of minimum energy.

Origin: Applying the field of Statistical Mechanics to the field of
Combinatorial Optimization (1983)

Draws an analogy between the cooling of a material (search for
minimum energy state) and the solving of an optimization problem.

Original Paper Introducing the Concept
— Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., “Optimization by Simulated

Annealing,” Science, Volume 220, Number 4598, 13 May 1983, pp. 671-
680.



MATLAB® “peaks” function

Difficult due to plateau at z=0, local maxima
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‘peaks” convergence

* Initially ~ nearly random search
« Later ~ gradient search

SA convergence history
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Statistical Mechanics
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The Analogy

Statistical Mechanics: The behavior of systems with many
degrees of freedom in thermal equilibrium at a finite temperature.

Combinatorial Optimization: Finding the minimum of a given
function depending on many variables.

Analogy: If a liquid material cools and anneals too quickly, then the
material will solidify into a sub-optimal configuration. If the liquid
material cools slowly, the crystals within the material will solidify
optimally into a state of minimum energy (i.e. ground state).

— This ground state corresponds to the minimum of the cost function in an
optimization problem.
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Sample Atom Configuration

Original Configuration Perturbed Configuration

Atom Configuration - Sample Problem Atom Configuration - Sample Problem

0% &

o 1

E=133.67 E=109.04

Perturbing = move a random atom

to a new random (unoccupied) slot
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Energy of original (configuration)



Configurations

« Mathematically describe a configuration
— Specify coordinates of each “atom”

w2 e

— Specify a slot for each atom

r withi=1,.,4 R=1 12 19 23
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Energy of a state

« Each state (configuration) has an energy
level associated with it

H q,q.t =Zqipi—L g,9,t  Hamiltonian

H=T+V = Etot Energy of configuration

I I Objective function value of design
kinetic potential

Energy
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Energy sample problem

* Define energy function for “atom” sample
problem

N 1

2 2 9

potential ~ J*! )
energy kinetic
energy

E R = z E r Absolute and relative position of
i=1 each atom contributes to Energy
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Compute Energy of Config. A

* Energy of initial configuration

Atom Configuration - Sample Problem

E, =1.10-1+~/5++/18 + /20 = 20.95

E,=1.10-2+~/5 +~/5 +/6 =26.71 (3
E,=110-4+18 +/5 ++/2 =47.89 0 o

-1 0 1 2 3 4 5 6 7

E, =1-10-3++/20 +/5 +/2 =38.12

= o = N w N Ul o)) ~

Total Energy Configuration A:  E({r,})= 133.67
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Boltzmann Probability

Pl Number of configurations

N._ =
R P_N | P=#ofslots=25 N,=6,375,600
N=# of atoms =4

What is the likelihood that a particular configuration will
exist in a large ensemble of configurations?

- 7] Boltzmann probability
E({r}) depends on energy
KT and temperature

P {r} =exp
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Boltzmann Collapse at low T
T=100 T=10 L
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T high

Boltzmann Distribution collapses to the lowest energy
state(s) in the limit of low temperature

> Basis of search by Simulated Annealing
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Partition Function Z

* Ensemble of configurations can be
described statistically

 Partition function, Z, generates the
ensemble average

—E. Ne —E.
Z=Trexp| — |= ) exp| —
5 Sl

Initially (at T>>0) equal to the number of possible configurations
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Free Energy

_ Ng Average Energy of all
Eavg =E(T) = z E, T — Configurations in an
=1 ensemble

FT =kTINZ=E(T)-TS

S E T
> exp| - E T
_EB(T)_ = [ KgT J B —dInZ

- Z d Yk,T

Relates average Energy at T with Entropy S
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Specific Heat and Entropy

« Specific Heat

cT :dE(T)jNR =

1 &, = _ 2
=M EM-ET } E7 M) -E T °

aT kT2 T kT
* Entropy
¢C(T) dS(T) C(T)
S(T S(T — dT _
(T)=S(T)- j =

Entropy is ~ equal to In(# of unique configurations)
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Low Temperature Statistics
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Minimum Energy Configurations

« Sample Atom Placement Problem
Uniqueness?

Atom Configuration - Sample Problem Atom Configuration - Sample Problem

6 6
) E*=60 i E*=14.26
4 4
| |
) 2
- | o000 |
0 0
1 1

Strong gravity g=10 Low gravity g=0.1
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Simulated Annealing
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Dilemma

« Cannot compute energy of all configurations !
— Design space often too large
— Computation time for a single function evaluation can
be large
« Use Metropolis Algorithm, at successively lower
temperatures to find low energy states

— Metropolis: Simulate behavior of a set of atoms in
thermal equilibrium (1953)

— Probability of a configuration existing at T -
Boltzmann Probability P(r,T)=exp(-E(r)/T)
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The SA Algorithm

Terminology:
— X (or R or I') = Design Vector (i.e. Design, Architecture, Configuration)
— E = System Energy (i.e. Objective Function Value)
— T = System Temperature
— A = Difference in System Energy Between Two Design Vectors

The Simulated Annealing Algorithm

1) Choose a random X, select the initial system temperature, and specify the
cooling (i.e. annealing) schedule

2) Evaluate E(X;) using a simulation model

3) Perturb X to obtain a neighboring Design Vector (Xi,,)

4) Evaluate E(X,,) using a simulation model

5) If E(Xi,1)< E(X), X,,; IS the new current solution

6) If E(X..1)> E(X)), then accept X,,; as the new current solution with a
probability et 4T where A = E(X,,,) - E(X).

7) Reduce the system temperature according to the cooling schedule.
8) Terminate the algorithm.
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SA Block Diagram
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Define initial
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|
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Tiry =Tj-AT

Evaluate energy
ER,)

:

T
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SA Block Diagram

Image by MIT OpenCourseWare.
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MATLAB Function: SA.m

Initial Configuration

Xo

Option Flags
options

A 4

Best Configuration

SA.m
—>  Xpest Ebest
Simulated Annealing
Algorithm History
Xhist
A A
A 4 A 4
evaluation perturbation
function function
file_eval.m file_perturb.m
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Exponential Cooling

» Typically (T,/T,)~0.7-0.9 T, ‘
Tk+l: T_ Tk

L L
O C-specific heat 0

Simulated Annealing Evolution
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Key Ingredients for SA

A concise description of a configuration (architecture, design,
topology) of the system (Design Vector).

A random generator of rearrangements of the elements in a
configuration (Neighborhoods). This generator encapsulates rules
S0 as to generate only valid configurations. Perturbation function.

A guantitative objective function containing the trade-offs that
have to be made (Simulation Model and Output Metric(s)).
Surrogate for system energy.

An annealing schedule of the temperatures and/or the length of
times for which the system is to be evolved.
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Sample Problems
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Traveling Salesman Problem

N cities arranged randomly on [-1,1]
Choose N=15

SAdemo2.m

Minimize “cost” of route (length, time,...)
Visit each city once, return to start city

N 2 2
| R :Z\/Z X R, -x R 2+\/Z X, R —X; Ry
i i1

.

- - Y -, = Y - -
visit N cities return home to first city
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TSP Problem (cont.)

Initial (Random) Route
Length: 17.43

Final (Optimized) Route
Length: 8.24

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Length of TSP Route: 17.4309

Length of TSP Route: 8.2384

Shortest Route

Result with SA
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Structural Optimization

* Define:
— Design Domain find p 1=1..,N
— Boundary Conditions minC = f'u(p,)
— Loads | st u=K1f
— Mass constraint \

» Subdivide domain st. Y Vip <m,
— N x M design “cells” =1

— Cell density p=1 or p=0
* Where to put material to minimize compliance?
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Structural Topology Optimization (ll)

“Energy” = strain energy = compliance
Computed via Finite Element Analysis
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Structural Toplogy Optimization

Initial Structural Toplogy “Final” Toplogy

Initial Structural Configuration: X

Structural Configuration

[N o [N N w IN o o ~ © ©
7 7 / H

o~

2 4 6 . 1 Compliance C=236.68

Compliance C=593.0 Not “optimal” — often ~ «—
need post-processing
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Structural Optimization —
Convergence Analysis

Simulated Annealing Evolution
14
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Premature termination

SA convergence history
2200

L L
% current configuration
2000 - O new best configuration |-
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Indicator: Best Configuration found only shortly
before Simulated Annealing terminated.
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Final Example: Telescope Array
Optimization
* Place N=27 stations in xy within a 200 km radius

* Minimize UV density metric
» Ideally also minimize cable length

Cable Length = 1064.924 UV Density = 0.67236
200 r ~ 100 F T T T
100 - e - SRt
LA A
0 0 N #:‘Jfﬁk
- et 4
iti o
I n Itl al ’ﬁtﬂ,;..,'_‘_ .l'-n;;\._‘
. . N ‘i-!' .l
Configuration 100 - 50 ARG
_200 k . . ] . . _100 k . . - E
-20 -100 0 100 200 -100 -50 0 50 100
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Optimized Solution

Cable Length = 1349.609 UV Density = 0.33333

200 - ) 7 100+ ] :
100 501 .ot i

O 7) 0 '.;::"'2::..;..:i :}.;;.:t-: .f\.' wal .

I T TR

100~ T B0 A
_200 k - - - s _100 k - - - L

-20 -100 0 100 200 -10 -50 0 50 100

Simulated Annealing | \06ved UV density from 0.67 to 0.33

« Simulated Annealing transforms the array:
— Hub-and-Spoke - Circle-with-arms

Cohanim B. E., Hewitt J. N., and de Weck O.L., “The Design of Radio Telescope Array
Configurations using Multiobjective Optimization: Imaging Performance versus Cable
Length”, The Astrophysical Journal, Supplement Series, 154, 705-719, October 2004 40



Summary
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Summary: Steps of SA

The Simulated Annealing Algorithm

1) Choose a random X, select the initial system temperature, and outline the
cooling (ie. annealing) schedule

2) Evaluate E(X;) using a simulation model

3) Perturb X to obtain a neighboring Design Vector (Xi,,)
4) Evaluate E(X,,) using a simulation model

5) If E(Xi,)< E(X), Xi,; Is the new current solution

6) If E(X..1)> E(X)), then accept X,,; as the new current solution with a
probability et 2T where A = E(X,;) - E(X).

7) Reduce the system temperature according to the cooling schedule.
8) Terminate the algorithm.
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Recent Research in SA

Alternative Cooling Schedules and Termination
criteria

Adaptive Simulated Annealing (ASA) —
determines its own cooling schedule

Hybridization with other Heuristic Search
Methods (GA, Tabu Search ...)

Multiobjective Optimization with SA
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