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Today’s Topics

• Information Flow and Coupling 

• MDO frameworks
– Single-Level (Distributed analysis)
– Multi-Level (Distributed design)

• Collaborative Optimization
• Analytical Target Cascading
• (Hierarchical Decomposition & Multi-Domain Formulation) 
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Standard Optimization Problem
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Information Flow
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Information Flow
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Information Flow
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Advantages of Decoupling

Computation of g(x) can be very time consuming, want 
to divide the work and compute in parallel.
For example, if 1 2

1 2 1 2

1 1 2 2

( , ),  where ,

and g( ) ( ( ), ( ))

n nx x x x x

x g x g x

Then g1 and g2 can be computed in parallel. Graphically,
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Coupling 

The decoupled constraints assumption is not general. Subsystems
can be coupled and loops can arise. For example,

Optimizer

SS1 SS2

1x 2x

1u 2u

2w
1w

x: decision variables

w: SS outputs (constraint, cost)

u: SS input (dependent)

SS1

SS2

Optim

vline: SS input

hline: SS output

1w

2w
1u

1x

2u

2x

1w

2w

Loop

Computation of w1 and w2 requires an iterative method.
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Coupling

• An example where such a loop happens is as follows:

1 2

1 1 1 2 2 1

2 2 2 1 1 2

min ( , )

( , ( , )) 0
s.t. 

( , ( , )) 0

J x x

w g x g x w

w g x g x w

1 2

1 2where , , : , 1,2n n

i i i ix x g x u w i

• w1 and w2 satisfy coupled relations at each optimization iteration.

At each constraint evaluation, nonlinear equations must be solved

(e.g. by Newton’s method) in order to obtain w1 and w2, which can

be time consuming.

Want a way to return to the situation of decoupled constraints.

R R
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Surrogate Variables (“Tearing”)

Information loop can be broken by introducing surrogate variables.

1 2

1 1 1 2 2 1

2 2 2 1 1 2

min ( , )

( , ( , )) 0
s.t. 

( , ( , )) 0

J x x

w g x g x w

w g x g x w

• u1 and u2 are decision variables acting as the inputs to 
g1(SS1) and g2 (SS2). Introducing surrogate variables 
breaks information loop but increases the number of 
decision variables.
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Numerical Example
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Solution:
1 2
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MATLAB® 5.3
coupled: 356,423 FLOPS 4.844s
uncoupled:   281,379 FLOPS 0.453s
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Single-level and Multi-Level Frameworks

Single-level

(Distributed Analysis)

-disciplinary models provide 
analysis
-all optimization done at 
system level

non-hierarchical 
decomposition

Multi-level

(Distributed Design)

-provide disciplinary 
models with design tasks
-optimization at 
subsystem and system 
levels

hierarchical 
decomposition
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Single-level (Distributed Analysis)

• Disciplinary models provide analysis
• Optimization is controlled by some overseeing code 
or database

e.g. ISight (Optimizer)

System
Optimizer

Shared data

Local data

Structures

Local data

Aero

Optimizer
design variables

constraints

iSight

x J(x),g(x),h(x)

subsystem 
analyses
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Optimizer
objective

design variables
constraints

x J(x)

performance 
analysis

aerodynamic 
analysis

structural 
analysis

x g(x)

h(x) x

g(x)

h(x)

• During the optimization, the overseeing code keeps track of the 
values of the design variables and objective
• The values of the design variables are changed according to 
the optimization algorithm
• Disciplinary models are asked to evaluate constraints/objective 

Single-level (Distributed Analysis)
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• Multi-level Optimization methods distribute decision 
making throughout the system

• Subsystem level models are provided with design 
tasks

• Optimization is performed at a subsystem level in 
addition to the system level 

• Provide some autonomy to design groups and 
reduces communication requirements.

Multi-level (Distributed Design)
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Multi-level (Distributed Design)

System level optimizer

SS1
optimizer

SS2
optimizer

SSN
optimizer

SS1
analyzer

SS2
analyzer

SSN
analyzer

……

command/result
command/result

command/result

Subsystem
black box (BB)
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Collaborative Optimization

Collaborative Optimization (CO)

• disciplinary teams satisfy local constraints while 
trying to match target values specified by a 
system coordinator

• preserves disciplinary-level design freedom.

• CO is used typically to solve discipline-based 
decomposed system optimization problems.



18
© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Collaborative Optimization

OPTIMIZER

TARGET STATE
Coupled

Uncoupled
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Collaborative Optimization

Two levels of optimization:

• A system-level optimizer provides a set of targets. 

– These targets are chosen to optimize the system-level 
objective function

• A subsystem optimizer finds a design that minimizes the 
difference between current states and the targets.

– Subject to local constraints
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Collaborative Optimization
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CO – Subsystem Level

2

1
target local

variables variables

local variables

local constraints
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x

• The subsystem optimizer modifies local variables to 
achieve the best design for which the set of local 
variables and computed results most nearly matches the 
system targets

• The local constraints must also be satisfied
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CO – System Level

• System-level optimizer changes target variables to 
improve objective and reduce differences Jk

– Jk=0 are called compatibility constraints 

– compatibility constraints are driven to zero, but may 
be violated during the optimization
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CO Example: Aircraft Design

Consider a simple aircraft design problem:
maximize range for a given take-off weight by choosing 
wing area, aspect ratio, twist angle, L/D, and wing weight.

aero

struct

perf
modified from Kroo et al. AIAA 94-4325

wing area, S
aspect ratio, AR

twist angle, 

range, R

L/D

wing weight, 
W
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CO Example: Aircraft Design

max R0
x0 = [R0 S0 AR0 0 L/D0 W0]T

s.t. J1=0, J2=0, J3=0

min J1
J1= (S-S0)2 + (AR-AR0)2+

( - 0)2 + (L/D-L/D0)2

x = [AR ]T

aero analysis

x L/D

min J2
J2= (S-S0)2 + (AR-AR0)2 + 

( - 0)2 + (W-W0)2 

x = [S  AR]T

struct analysis

x W

min J3
J3= (L/D-L/D0)2+ (W-W0)2 

+ (R-R0)2

x = [L/D W]T

perf analysis

x R

x0
J1

x0
J3x0 J2
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Collaborative Optimization
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Collaborative Optimization

x0 = system-level target variable values

x = subsystem local variables

yij = coupling functions

• yij =outputs of subsystem j which are needed as inputs to 
subsystem i.

• Coupling equations must also be satisfied, so coupling 
variables are included in subsystem objective.

• Used to reduce the number of system-level parameters.



27
© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Analytical Target Cascading

• ATC was initially developed as a product development 
tool to cascade system-level product targets through a 
hierarchy of design groups

• ATC is typically used to solve object-based decomposed 
system optimization problems

• The ATC paradigm is based on hierarchical organizational 
and analysis structures

• ATC approach is to take a high-level system analysis and 
use more detailed subsystem analyses at the lower levels. 
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Analytical Target Cascading
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Image by MIT OpenCourseWare.
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Analytical Target Cascading

• ATC’s mathematical formulation is similar to CO 

although they were developed with different motivations.

• Bottom level problems have the most design freedom. 
Many possible solutions can exist that both match 
targets while satisfying local design constraints.

• At higher levels design freedom is progressively 
reduced, until it is a minimum at the top level.
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Analytical Target Cascading
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Analytical Target Cascading

• Linking variables y: Quantities that are input to more than one 
subspace. These could be either shared variables or coupling 
variables.

• Local decision variables x: Variables that a particular subspace 
determines the value of. 

• Responses R: Values generated by subspaces required as inputs 
to respective parent subspaces. 

• Targets T: Values set by parent subspaces to be matched by the 
corresponding quantities from child subspaces. 

• ƐR and Ɛy: allowable compatibility tolerance.
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Hierarchical Decomposition &

Multi-Domain Formulation

Decomposition

Courtesy of Anas Alfaris. Used with permission.
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Decomposition
L1

Hierarchical Decomposition &

Multi-Domain Formulation

Courtesy of Anas Alfaris.Used with permission.
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Building  System

Decomposition

Hierarchical Decomposition &

Multi-Domain Formulation

Courtesy of Anas Alfaris. Used with permission.
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Formulation

Hierarchical Decomposition &

Multi-Domain Formulation

Courtesy of Anas Alfaris. Used with permission.
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Where:
j is an indicator of the fraction of

total elements to which element j

provides input,
i is the fraction of total elements

on which element i depends, and
aij is an element of a matrix that
can be the DSM, a power of the
DSM, or the V matrix.

Formulation

Hierarchical Decomposition &

Multi-Domain Formulation
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Formulation

Hierarchical Decomposition &

Multi-Domain Formulation

Courtesy of Anas Alfaris. Used with permission.
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Formulation

Hierarchical Decomposition &

Multi-Domain Formulation

Courtesy of Anas Alfaris. Used with permission.
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