
16.888/ESD 77 Multidisciplinary System Design

Optimization:


Assignment 4 Part a) Solution


Part A1 

(a) Increasing mutation rate results in increased population density. 

(b) The required number of bits: 
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(c) Using the same formula as above, we get: nbits = 2. 

(d) The binary to decimal conversion can be written as: 

d = (binary to decimal conversion) + xmin 

Here x =1 and therefore to get a decimal number 3, we should look for a binary string min

that represent decimal number 2. The corresponding binary string is 10 (i.e., 

1.2 2−1 + 0.2 0 = 2 ). 

(e) The correct answer is (b) – B&C.  

A is not possible because it’s starting bit is 1, but both parents starting bit is 0. D is not

possible since it’s 4th bit is 1, but that of both parents is 0.  


F 100 
(f) p = 1 = = 0.10 .

F1 5 

∑F 1000 
i


i=1


(g) In this population of size 5, only F2 has a better fitness than F1. Hence, assuming week 
dominance, F2 would be selected in 4 out of 5 instances. The only time it would lose 
when it is compared to F2. Therefore the probability that F1 would be selected is 4/5 = 
0.80. 

(h) A 16 bit variable can have 216 possible values and a 4 bit variable can have 24 possible

values. 

Hence the total number of possible population members = 216. 24=220 . 


1 



Part A2 

This problem has 5 continuous variables (i.e., the c/s dimensions of I beams and 
supporting column) and 3 integer variables (i.e., number of beams and material 
identifiers). Therefore, we can use heuristic algorithms like Simulated Annealing, 
Genetic Algorithm; or Branch and Bound Algorithms, or perform explicit enumeration on 
integer variables while optimizing for 5 continuous variables (this would mean 4*4*4 = 
64 gradient-based optimization runs for each possible inter parameter settings). 

This problem also brings out the role of constraints and bounding characteristics in MDO 
problem formulations. 

The first step would be to use some “physical” bounds on the cross-sectional dimensions. 
For example, one cannot produce an I-beam of thickness 0 or 1 mm or it is impractical 
for the height of I-beam to go over say, 5 m in an over-bridge construction. 

In addition, for it to be an I-beam, impose two geometrical constraints: 

2t 
≤ 1 

h 
t 

≤ 1 
b 

If there is no positive lower limit on the beam height, it will lead to non­
physical/degenerate solution since bending stress is undefined (i.e., would be zero) if the 
height of the beam is zero. In that case, imposing a constraint on shear stress will ensure 
that you never have a “virtual” beam. The optimal bridge might vary depending on the 
bounds selected. 

Let us define the optimization problem assuming the bounds as detailed below: 
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Min . Cost, C = f (X ) 

2t 
s t . ≤ 1 

h 
t 

≤ 1 
b 
σ ≤ σ

bending ,failure bending 

σ ≤ σ
shear ,failure shear 

σ ≤ σ sup port failure ,sup port 

P ≤ P
applied critical ,sup port 

0.1 m ≤ b ≤ 1 m 

0.01 m ≤ t ≤ 0.5 m 

0.1 m ≤ h ≤ 2 m 

0.2 m ≤ w ≤ 2 m 

0.3 m ≤ d ≤ 3 m 

The bounds can be chosen to be different than the above but should be physical 
realizable. 

One might require that there be no beam overhang (which lead to structural problems not 
considered in this problem) and in that the depth of the support (d) should be higher that 
the combined flange width (b) of beams. This can be added as another constraint to the 
above list of the form (# beams)*b+ε)≤d and in the example shown later, ε = 0.05 m was 
used. This ensures that there is that the beams completely rest on the supporting column. 

(a) This problem consists of continuous and integer design variables and we cannot 
directly apply gradient-based optimization techniques that handle continuous variables 
only. Therefore, we can use heuristic algorithms like Simulated Annealing, Genetic 
Algorithm; or Branch and Bound Algorithms, or perform explicit enumeration on integer 
variables while optimizing for 5 continuous variables (this would mean 4*4*4 = 64 
gradient-based optimization runs for each possible inter parameter settings). 

The solutions based on GA and explicit enumeration on integer variables is presented 
below. 

(b) If we use explicit enumeration of three integer variables, we have to run 4*4*4 = 64 
gradient-based optimization using 5 continuous variables. The result of such an analysis 
is shown below: 

Problem 

formulation 

with SQP 

b (m) t 
(m) 

h 
(m) 

w 
(m) 

d (m) Beam 
materi 

al 

Support 
Material 

# 
beams 

Optimal 
Cost 

w/o shear stress 0.3471 0.01 2.0 0.374 0.374 A514 Concrete 1 $5771.3 
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constraint 

With shear 
stress constraint 

0.3471 0.01 2.0 0.374 0.374 A514 Concrete 1 $5771.3 

With constraint 
linking beam 

width (b), 
number of 

beams (N) and 
support depth 

(d) 

0.3471 0.01 2.0 0.3664 0.3971 A514 Concrete 1 $5774.1 

One can observe that the shear constraint is not active for the set of variable bounds used 
and therefore do not influence the optimal solution. The result would be different (and 
shear constraint would be active) if beam height lower limit is zero. When the constraint 
linking the overall beam flange length and support depth is used, this constraint is active 
at the optimal solution. Notice that the cost has increased from $5771.3 to $5774.1. 

Now using GA with higher initial penalty, lower crossover fraction of 0.6 with increases 
mutation rate (generations = 50, popsize = 200), the following solution was obtained: 

Problem 

formulation 

with GA 

b (m) t 
(m) 

h (m) w (m) d (m) Beam 
materi 

al 

Support 
Material 

# 
bea 
ms 

Optim 
al Cost 

With shear 
stress constraint 

0.3744 0.01 1.938 0.374 0.374 A514 Concrete 1 $5796.6 

With constraint 
linking beam 
width (b), # 

beams (N) and 
support depth 

(d) 

0.4153 0.01 1.865 0.3476 0.4653 A514 Concrete 1 $5813.4 

The GA closed on the near optimal solution within first 20 generations but had hard time 
finding the final solution. The solutions obtained by GA are within 1% to that obtained 
using explicit enumeration on integer variables. 

It is worth noting that a hybrid strategy of running GA for 20 generations and handing 
over the GA solution (with integer variables held fixed and using 5 continuous variables 
as the design variables) as the starting point for gradient-based algorithm obtained the 
optimal solution much faster. 

Part A3 

The gradient of the objective function is: 

∇f = [0.0001 x1 0.001 x2 0.01 x3 0.1 x4 x5 10 x6 100 x7 1000 x8 ]T 

The Hessian matrix is diagonal and constant: 
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⎡0.0001 0 0 0 0 0 0 0 ⎤ 
⎢ ⎥ 
⎢ 0 0.001 0 0 0 0 0 0 ⎥ 
⎢ 0 0 0.01 0 0 0 0 0 ⎥ 
⎢ ⎥ 
⎢ 0 0 0 0.1 0 0 0 0 ⎥H = 
⎢ 0 0 0 0 1 0 0 0 ⎥ 
⎢ ⎥ 
⎢ 0 0 0 0 0 10 0 0 ⎥ 
⎢ 0 0 0 0 0 0 100 0 ⎥ 
⎢ ⎥ 
⎢ 0 0 0 0 0 0 0 1000 ⎥⎣ ⎦ 

In order to compare the algorithms appropriately, a set of 10 random realizations in the 
design space is generated and used as the initial points in all cases. 

Start points X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) 
1 -0.7824 4.1574 2.9221 4.5949 1.5574 -4.6429 3.4913 4.3399 

2 1.7874 2.5774 2.4313 -1.0777 1.5548 -3.2881 2.0605 -4.6817 

3 -2.2308 -4.5383 -4.0287 3.2346 1.9483 -1.8290 4.5022 -4.6555 

4 -0.6126 -1.1844 2.6552 2.9520 -3.1313 -0.1024 -0.5441 1.4631 

5 2.0936 2.5469 -2.2397 1.7970 1.5510 -3.3739 -3.8100 -0.0164 

6 4.5974 -1.5961 0.8527 -2.7619 2.5127 -2.4490 0.0596 1.9908 

7 3.9090 4.5929 0.4722 -3.6138 -3.5071 -2.4249 3.4072 -2.4572 

8 3.1428 -2.5648 4.2926 -1.5002 -3.0340 -2.4892 1.1604 -0.2671 

9 -1.4834 3.3083 0.8526 0.4972 4.1719 -2.1416 2.5720 2.5373 

10 -1.1955 0.6782 -4.2415 -4.4605 0.3080 2.7917 4.3401 -3.7009 

(a) In all 10 cases, Newton method converged in 1 step. This is understandable because 
the objective function is quadratic with constant Hessian matrix and Newton method is 
guaranteed to converge in one step in such cases. 

(b) Conjugate gradient method: Exact line search: 14 iterations to converge on average; 
Inexact line search using fmincon: 34 iterations to converge on average. 

(c) Steepest descent method: Did not converge in any of the cases even after 5000 
iterations. 

λ max 1000 7(d) Condition number of Hessian, κ (H ) = = = 10 . 
λ 10 −4 

min 

(e)

Non-singular transformation matrix for hessian conditioning/scaling of the form x = Ly:


1 1 T T 1 TWe can write, objective function f ( ) x = xT Hx = y L HL y ≡ y y . 
2 2 =I 2 
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TSo the transformation matrix L must satisfy the relationship, L HL = I (identity matrix 
with all eigenvalues equal to 1). Utilizing the fact that H is diagonal and the diagonal 
entries represent its eigenvalues, we can compute the transformation matrix as: 

⎡ 1 ⎤
0 0 0 0 0 0 0 ⎥ 

⎥ 
⎢ 1 ⎥ 
⎢ 0 0 0 0 0 0 0 ⎥ 
⎢ 0.001 

⎥ 
⎢ 1 ⎥ 
⎢ 0 0 

0.01 
0 0 0 0 0 ⎥ 

⎢ ⎥ 
⎢ 1 ⎥ 
⎢ 0 0 0 0 0 0 0 ⎥L = 0.1 
⎢ ⎥ 
⎢ 0 0 0 0 1 0 0 0 ⎥ 
⎢ 1 ⎥ 
⎢ 0 0 0 0 0 0 0 ⎥ 
⎢ 10 ⎥ 
⎢ 1 ⎥ 
⎢ 0 0 0 0 0 0 0 ⎥ 
⎢ 100 ⎥ 
⎢ 1 ⎥ 
⎢ 0 0 0 0 0 0 0 
⎣ 

(f) Number of iteration to converge before and after scaling: 

0.0001 ⎢ 
⎢ 

1000 
⎥ 
⎦ 

Algorithm 
original N 

scaled N Improvement (%) 

Newton 1 1 No impact 

Conjugate gradient/Quasi-Newton (fmincon) 14/36 2 85(%)/ 95(%) 

Steepest Descent >5000 2 ~100(%) 

(g) Comments on sensitivity of these algorithms to scaling: Newton method is 
insensitive to scaling while steepest descent is highly sensitive. Since the objective 
function is quadratic, Newton methods converges in just one step in any case. The 
conjugate gradient and the quasi-Newton method (with identity matrix as the initial 
Hessian and inexact line search) converged in two steps on scaling. The steepest descent 
method becomes a viable option only after scaling, which makes the Hessian matrix an 
identity. Therefore the scaling operation is mandatory for using steepest descent method 
in this case. 
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