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Overview

We need models for:

• The probability that a component will start (fail) on demand.

• The probability that a component will run for a period of time given a 
successful start.

• The impact of repair on these probabilities.

• The frequency of initiating events.
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Failure to start

P[failure to start on demand] ≡ q ≡ unavailability

P[successful start on demand] ≡ p ≡ availability

Requirement:  p + q = 1
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The Binomial Distribution (1)

• Start with an “experiment” that can have only two outcomes:  “success”
and “failure” or {0, 1} with probabilities p and q, respectively.

• Consider N "trials," i.e., repetitions of this experiment with constant  q.  
These are called Bernoulli trials.

• Define a new DRV:  X = number of 1's in  N  trials

• Sample space of X:   {0,1,2,...,N}

• What is the probability that there will be k 1’s (failures) in N trials?
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The Binomial Distribution (2)

• This is the probability mass function of the Binomial Distribution.
• It is the probability of exactly k failures in N demands.
• The binomial coefficient is:
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For the coin:  Assume 3 trials.  We are interested in 1 failure.

•There are 3 such sequences:  fss, sfs, ssf (mutually exclusive). 

•The probability of each is qp2.  

•If order is unimportant, the probability of 1 failure in 3 trials is 3qp2.
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The Binomial Distribution (3)

• Mean number of failures:   qN
• Variance: q(1-q)N

Normalization:

P[at most m failures] =
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Example: 2-out-of-3 system

• We found in slide 16 of RPRA 1 that the structure function is (using min 
cut sets):
XT =  (XAXB+XBXC+XCXA) - 2XAXBXC

• The failure probability is P(failure) = P(XT=1)  =  3q2 – 2q3

• Using the binomial distribution:

• Pr(system failure) = P[2 fail] + P[3 fail] = 3q2(1-q) + q3

= 3q2 – 2q3

Notes: 1.  We have assumed nominally identical and independent 
components in both cases.
2.  If the components are not nominally identical or independent, 
the structure function approach still works, but the binomial 
distribution is not applicable.  Why?
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The Poisson Distribution

• Used typically to model the occurrence of initiating events.
• DRV:  number of events in (0, t)
• Rate is constant; the events are independent.
• The probability of exactly k events in (0, t) is (pmf):
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Example of the Poisson Distribution
• A component fails due to "shocks" that occur, on the average, once every 

100 hours.  What is the probability of exactly one replacement in 100 
hours?  Of no replacement?

• t = 10-2*100 = 1
• Pr[1 repl.] = e-λt = e-1 = 0.37 = Pr[no replacement]
• Expected number of replacements:  1
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Pr[k≤2] = 0.37 + 0.37 + 0.185 = 0.925
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Failure while running

• T:  the time to failure of a component. 

• F(t) = P[T < t]:  failure distribution (unreliability)

• R(t) ≡ 1-F(t) = P[t < T]:  reliability

• m:  mean time to failure (MTTF)

• f(t): failure density,  f(t)dt = P{failure occurs between t and 
t+dt} = P [t < T < t+dt]
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The Hazard Function or Failure Rate

The distinction between h(t) and f(t) :

f(t)dt: unconditional probability of failure in (t, t +dt),        

f(t)dt = P [t < T < t+dt] 

h(t)dt:  conditional probability of failure in (t, t +dt) given that  
the component has survived up to t.

h(t)dt = P [t < T < t+dt/{ t < T}]
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The “Bathtub” Curve
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The Exponential Distribution

(failure density)

•

• constant  (no memory;  the only pdf with 
this property) ⇒ useful life on bathtub curve

(another rare-event approximation)
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Example:   2-out-of-3 system

Each sensor has a MTTF equal to 2,000 hours.  What is the 
unreliability of the system for a period of 720 hours?

• Step 1: System Logic.

XT =  (XAXB+XBXC+XCXA) - 2XAXBXC
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Example:   2-out-of-3 system (2)

Step 2:    Probabilistic Analysis.

For nominally identical components:  
P(XT)  =  3q2 – 2q3   (slide 7 of this lecture)

But

System Unreliability:   
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Example:   2-out-of-3 system (3)

For a failure rate of 5x10-4 hr-1 and for t = 720 hrs ⇒

⇒

FT(720) =  3 x 0.302 - 2 x 0.303 =  0.216

Since      =  0.36 > 0.1 ⇒ the rare-event approximation does not         
apply.

Indeed, 

FT(720) ≅ 3x0.362 – 2x0.363 = 0.295 > 0.216

36.0t =λ
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A note on the calculation of the MTTF

Proof
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A note on the calculation of the MTTF 
(cont.)
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MTTF Examples: Single Exponential 
Component

R(t) = exp(-λt)
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MTTF Examples: The Series System

Step 1:  System Logic
(minimal path sets)

Step 2:  Probabilistic Analysis
P(YT = 1) = pM but  

⇒ The system is exponential
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MTTF Examples: 1-out-of-2 System

Step 1: System Logic    XT = X1 X2 (slide 9 of RPRA 1)
Step 2: Probabilistic Analysis
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MTTF Examples: 2-out-of-3 System
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The MTTF for a single exponential component is:

⇒ The 2-out-of-3 system is slightly worse.
λ
1

Using the result for FT(t) on slide 15, we get
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The Weibull failure model

Weibull Hazard Rate Curves
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Adjusting the value of b, 
we can model any part of 
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A Simple Calculation

• The average rate of loss of electric power in a city is 0.08 per year.  A 
hospital has an emergency diesel generator whose probability of 
starting successfully given loss of power is 0.95.

• i. What is the rate of occurrence of blackouts at this hospital?

= 0.004 yr-1

= 0.076 yr-1

λ=0.08 yr-1 q = 0.05

p = 0.95

bλ

okλ

Loss of power Diesel does not start
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A Simple Calculation (cont.)

=  0.08 (power losses per year)x 0.05 (Diesel fails given a power loss) = 4x10-3

per year.

ii. What is the probability that the hospital will have no blackouts in a period of 
five years?   Exactly one blackout?  At least one blackout?  

Use the Poisson distribution:
P(no blackouts in 5 yrs) = exp(-0.02) = 0.9802
P(exactly one blackout in 5 yrs) = (0.02)x0.9802 = 0.0196
P(at least one blackout in 5 yrs) = P(1 or 2 or 3…) = 
= 1 - P(no blackouts in 5 yrs) = 1 – 0.9802 = 0.0198

bλ

02.05x004.0tb ==λ
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The Normal (Gaussian) distribution
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The Normal (Gaussian) distribution (2)

Standard Normal Variable:
σ
μ−
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a 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0 0.004 0.008 0.012 0.016 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.091 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.148 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.17 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.195 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.219 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.258 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.291 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.334 0.3365 0.3389

1 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.377 0.379 0.381 0.383
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.398 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.437 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.475 0.4756 0.4761 0.4767

2 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.483 0.4834 0.4838 0.4842 0.4846 0.485 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.489
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.492 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.494 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.496 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.497 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.498 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.499 0.499

Area under the Standard Normal Curve 
(from 0 to a)
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Example of the normal distribution

• = 10,000 hr (MTTF)                    = 1,000 hr

• Pr [X > 11,000 hr] = Pr [Z > 1] = 0.50 – 0.34= 0.16

1
000,1

000,10000,11Z =−=

μ σ
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An Example

A capacitor is placed across a power source.  Assume 
that surge voltages occur on the line at a rate of one 
per month and they are normally distributed with a 
mean value of 100 volts and a standard deviation of 
15 volts.  The breakdown voltage of the capacitor is 
130 volts.
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An Example (2)

i. Find the mean time to failure (MTTF) for this capacitor.
= 1 per month

Pd/sv = conditional probability of damage given a surge voltage   
= P (surge voltage>130 volts/surge voltage) = 

0228.09772.01)2Z(P1

)2Z(P)
15

100130Z(P

=−=<−=

=>=−>=

svλ
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An Example (3)

Therefore, the rate of damaging surge voltages is 

Equivalently, the capacitor’s failure time follows an exponential 
distribution with the above rate.  
The mean time between failures of the capacitor is

12
sv/dsvd )month(10x28.20228.0x1xP −−==λ=λ

months86.43
10x28.2

1MTBF 2 ==
−
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An Example (4)

ii. Find the capacitor’s reliability for a time period of three 
months.

R(3 mos) = exp(- × 3) = exp(-2.28 × 10-2x3) = 0.934dλ
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Observations

• Events (“shocks”) occur in time according to the Poisson distribution  
[the losses of electric power on slide 24, the surge voltages on slide 30].

• There is a conditional probability that a given shock will be “lethal”, 
i.e., will fail the component.  This conditional probability was given on 
slide 24 as 0.05, while on slide 31 it was calculated from “reliability 
physics,” i.e., from the normal distribution of the voltage (2.28x10-2).

• We calculated the rate of lethal shocks as the product of the rate of 
shocks times the conditional probability of failure.  The occurrence of 
lethal shocks is, then, modeled as a Poisson process with this rate.
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The Poisson and Exponential Distributions

• Let the rate of lethal shocks be       .

• P[no lethal shocks in (0, t)] = (slide 8, k=0)
The Poisson DRV is the number of lethal shocks.

• The component will not fail as long as no lethal shocks 
occur.  So, we can also write

• P(failure occurs after t) = P[T > t] =       (slide 13)
The exponential CRV is T, the failure time.

*λ

tλ*e−

tλ*e−
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The Lognormal Distribution
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The Lognormal Distribution (2)
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Relationship with the Normal Distribution

If     is a lognormal variable with parameters μ and σ,
then:  

Y ≡ ln

is a normal variable with parameters     
(mean) and                        

(standard deviation).

λ

λ

μ

σ
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The 95th percentile

Since Y is a normal variable, its 95th percentile is

Y95 =    + 1.645 

But,   Y ≡ ln ⇒ ln =      + 1.645 ⇒

σ+μ=λ 645.1
95 e as in slide 37

σ

σ

μ

μ95λλ
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The Lognormal Distribution: An example
Suppose that  = -6.91  and        =1.40

• Median: = exp(-6.91) ≅ 10-3  

• Mean: m = exp(    +    2/2) = 2.65x10-3  

• 95th percentile: = exp(-6.91 + 1.645x1.40) ≅ 10-2  

• 5th percentile: = exp(-6.91 - 1.645x1.40) ≅ 10-4  

• Error Factor: EF = 10

μ

μ

σ

σ

50λ

05λ
95λ
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