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Probability:  Axiomatic Formulation

The probability of an event A is a number that satisfies the
following axioms (Kolmogorov):

0 ≤ P(A) ≤ 1

P(certain event) = 1

For two mutually exclusive events A and B:

P(A or B) = P(A) + P(B)
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Relative-frequency interpretation

• Imagine a large number n of repetitions of the 
“experiment” of which A is a possible outcome.

• If A occurs k times, then its relative frequency is:

• It is postulated that:
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Degree-of-belief (Bayesian) interpretation

• No need for “identical” trials.

• The concept of “likelihood” is primitive, i.e., it is meaningful 
to compare the likelihood of two events.

• P(A) < P(B) simply means that the assessor judges B to be 
more likely than A.

• Subjective probabilities must be coherent, i.e., must satisfy 
the mathematical theory of probability and must be 
consistent with the assessor’s knowledge and beliefs.
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Basic rules of probability: Negation
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Basic rules of probability: Union
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Rare-Event Approximation: 



RPRA 2. Elements of Probability Theory 7

Union (cont’d)

• For two events:   P(A∪B) = P(A) + P(B) – P(AB)

• For mutually exclusive events:

P(A∪B) = P(A) + P(B) 



RPRA 2. Elements of Probability Theory 8

Example:  Fair Die

Sample Space:    {1, 2, 3, 4, 5, 6}          (discrete)

“Fair”:  The outcomes are equally likely (1/6).

P(even) = P(2 ∪ 4 ∪ 6) = ½ (mutually exclusive)
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Union of minimal cut sets
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Upper and lower bounds
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The first “term,” i.e., sum, 
gives an upper bound.

The first two “terms,” give 
a lower bound.
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Conditional probability
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Learning that A is true has no impact on our probability of B.
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Example:  2-out-of-4 System

1

2

3

4

M1 = X1 X2 X3              M2 = X2 X3 X4     

M3 = X3 X4 X1              M4 = X1 X2 X4

XT = 1 – (1 – M1) (1 – M2) (1 – M3) (1 – M4)

XT = (X1 X2 X3 + X2 X3 X4 + X3 X4 X1 + X1 X2 X4) - 3X1 X2 X3X4
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2-out-of-4 System (cont’d)

P(XT = 1) = P(X1 X2 X3 + X2 X3 X4 + X3 X4 X1 + X1 X2 X4) –
3P(X1 X2 X3X4)

Assume that the components are independent and nominally
identical with failure probability q.  Then,

P(XT = 1) = 4q3 – 3q4

Rare-event approximation: P(XT = 1) ≅ 4q3
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Updating probabilities (1)

• The events, Hi, i = 1...N,  are mutually exclusive and exhaustive, i.e.,  
Hi∩Hj= Ø, for i≠j,  ∪Hi = S, the sample space.

• Their probabilities are  P(Hi).

• Given an event E, we can always write
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Updating probabilities (2)

• Evidence E becomes available.

• What are the new (updated) probabilities P(Hi/E)?
Start with the definition of conditional probabilities, 
slide 11. 

• Using the expression on slide 14 for P(E), we get
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Bayes’ Theorem

Posterior
Probability

Prior
Probability

Likelihood of the
Evidence
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Example:  Let’s Make A Deal

• Suppose that you are on a TV game show and the host has offered you 
what's behind any one of three doors.  You are told that behind one of 
the doors is a Ferrari, but behind each of the other two doors is a Yugo.  
You select door A.  

At this time, the host opens up door B and reveals a Yugo.  He offers you 
a deal.  You can keep door A or you can trade it for door C.

• What do you do?
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Let’s Make A Deal: Solution (1)
• Setting up the problem in mathematical terms:

A = {The Ferrari is behind Door A}
B = {The Ferrari is behind Door B}
C = {The Ferrari is behind Door C}

• The events A, B, C are mutually exclusive and exhaustive.
• P(A) = P(B) = P(C) = 1/3 

E = {The host opens door B and a Yugo is behind it}

What is P(A/E)?    ⇒ Bayes’ Theorem  
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Let’s Make A Deal: Solution (2)
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But

P(E/B) = 0 (A Yugo is behind door B).

P(E/C) = 1 (The host must open door B, if the 
Ferrari is behind door C; he 
cannot open door A under 
any circumstances).
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Let’s Make A Deal: Solution (3)

•Let  P(A/E) = x  and  P(E/A) = p

•Bayes' theorem gives:
p1

px
+

=

Therefore

• For  P(E/A)  = p = 1/2 (the host opens door B randomly, if 
the Ferrari is behind door A)

⇒ P(A/E) = x = 1/3 =  P(A)  (the evidence has had no 
impact)
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Let’s Make A Deal: Solution (4)

• Since      P(A/E) + P(C/E) = 1  ⇒

• P(C/E) = 1 - P(A/E) = 2/3 ⇒

⇒ The player should switch to door C

• For  P(E/A) = p = 1  (the host always opens door B, if the 
Ferrari is behind door A)

⇒ P(A/E) = 1/2     ⇒ P(C/E) = 1/2,  switching to door C does not 
offer any advantage.
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Random Variables

• Sample Space: The set of all possible outcomes of an experiment.

• Random Variable: A function that maps sample points onto the real 
line.

• Example: For a die     ⇒ S = {1,2,3,4,5,6}

• For the coin:   S = {H, T} ≡ {0, 1}
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Events
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We say that  {X ≤ x}  is  an  event, where x is any number on 
the real line.

For example (die experiment):

{X ≤ 3.6} = {1, 2, 3} ≡ {1 or 2 or 3}

{X ≤ 96} = S    (the certain event)

{X ≤ -62} = ∅ (the impossible event)
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Sample Spaces

• The SS for the die is an example of a discrete sample space and X is a discrete 
random variable (DRV).

• A SS is discrete if it has a finite or countably infinite number of sample points.

• A SS is continuous if it has an infinite (and uncountable) number of sample 
points.  The corresponding RV is a continuous random variable (CRV).

• Example:
{T ≤ t}  =  {failure occurs before t}
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Cumulative Distribution Function (CDF)

• The cumulative distribution function (CDF) is

F(x) ≡ Pr[X ≤ x]

• This is true for both DRV and CRV.

Properties:
1. F(x) is a non-decreasing function of x.
2. F(-∞) = 0
3. F(∞) = 1
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CDF for the Die Experiment

F(x) 

1 / 6 

x65 4321

1 
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Probability Mass Function (pmf)

• For DRV:  probability mass 
function
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Probability Density Function (pdf)

f(x)dx = P{x < X < x+dx}
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Example of a pdf (1)
•Determine k so that

( ) 1x0forkxxf 2 ≤≤= ,

( ) ,0xf = otherwise

is a pdf.

Answer:

The normalization condition gives:
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Example of a pdf (2)

3xxF =)(

=∫=− dxx3)75.0(F)875.0(F
875.0

75.0

2

=  0.67 - 0.42  =  0.25 =

= P{0.75 < X < 0.875}
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Moments

Expected (or mean, or average) value 
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Percentiles

• Median:  The value xm for which

• F(xm) = 0.50

• For CRV we define the 100γ percentile as
that value of x for which

( )∫
γ

∞−
γ=

x

dxxf



RPRA 2. Elements of Probability Theory 33

Example
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