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Introduction to Predictive Modeling 

The issues of limited access to hospital beds and waiting times for elective surgery 
havebeen challenging the healthcare industry for many years.The shortage in primary 
care physicians andnursing staff has added another layer of complexity to this intertwined 
issue regarding limited healthcare resources.  

In coming years, these issues are expected to worsen. Almost all developed countries 
andmany developing countries are facing a shift in their population structure where the 
proportion of elderly is increasing. According to the OECD, the greatest use of healthcare 
services and expenditures occur in serving elderly population1.With this growing number 
of elderly citizens, shift in disease prevalence from acute infectious disease to one of 
chronic diseasehas been observed. As a consequence ofincreased life expectancy, the 
increased incidence of chronic disease observed in the aging population poses significant 
challengeto the healthcare system.  

Healthcare workers are not an exception to this phenomenon; they too are ageing and the 
existing workforce is replete with baby boomers, many of whom will retire within the 
next several years. 

There is therefore an emerging gap in the ability to supply services, both in terms of 
capital infrastructure and in terms of workforce, to meet the growing demand. Given this 
challenge, there are serious consequences in both economic resource allocation and 
patient health outcomes if decisions about future health service structures are incorrect.  

Models can provide a simplified interpretation of reality that preserves the essential 
features of the situation being examined and can be used as a tool to investigate decision-
making options, particularly in complex environments such as the healthcare sector. As 
one potential approach to facilitatedecision-making in the healthcare sector, predictive 
modeling can be used to model decisions about hospital bed capacity. 

Range of Approaches exists to Modeling Hospital Bed Capacity 

There are multiple ways to make a predictive model, but most fit into the three following 
categories: 

1. Deterministic Model2 

In deterministic modeling, variables are determined for a dynamic system. 
Parameters are often selected to build a generic model representing a specific 
system. Once its parameters are set, a deterministic model will produce exact 
values of the variables of interest and hence will not reflect the complex 
nature of the situation. 

1OECD. “A Disease‐Based Comparison of Health Systems – What is Best and at What Cost?”,

OECD Publications 2003, Paris.

2 Marshall et al. Length of Stay­Based Patient Flow Models: Recent Developments and Future

Directions.Health Care Management Science, 8: 213‐220, 2005.
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2. Stochastic Model 
Stochastic modeling will lead to probabilistic solution, which may be less 
precise than a deterministic solution. Stochastic models however will consider 
missing and uncertain input variables and generate probability distributions of 
the output variables. Such distribution is often times not realistic as not all 
outcomes are possible or applicable in real situations. 

3. Distribution Free Model3 

Distribution free modeling uses statistical distribution parameters such as 
mean and variance to optimize a variable considering best and/or worst case 
scenarios. The outcomes from this model will generate more realistic 
distributions. However, it will require expertise to justify appropriate ranges 
for the most and least likely scenarios for a valid model construction. 

Problem Description 

Our particular problem was given to us by Dr. Y of Beth Israel Deaconess Medical 
Center. He is interested in the area of predictive modeling, specifically, he wants to be 
able predict how many in-patient beds Beth Israel Deaconess Medical Center would need 
over the next couple years. He explained that this is important to the hospital because 
serious problems occur both when there is too much capacity in the system as well as too 
little. 

When all available in-patient beds are full, three things happen. One, the emergency room 
(ER) becomes overcrowded because patients can't be admitted into the in-patient ward. 
This leads to make-do solutions such as putting patients in the hallways, something so 
common now that they are referred to as “hallway beds”. Two, patients start to crowd the 
surgical recovery room, meaning that scheduled surgeries later in the day have to be 
canceled because there is simply no place to put them after surgery. This leads to patient 
frustration as well as idle surgical facilities. Finally, the intensive care unit (ICU) can't 
take in new critical patients because the downgraded patients can't be transferred to the 
in-patient wards.  

On the opposite side, having empty beds is inefficient and thus costly to the hospital.  

In both cases, not knowing how many beds are going to be in use makes staff scheduling 
difficult. Overscheduling means there are too many workers with nothing to do. Under-
scheduling means too few workers, necessitating additional workers to be called in on 
short notice and therefore at higher cost, both in the monetary sense and in worker 
satisfaction. 

Previous researchers have approached solving this problem in several ways. The most 
common method is to look at the historical in-flow of patients and how long patients stay 

3 Gallego and Moon. The Distribution Free Newsboy Problem: Review and Extensions. Journal of
the Operational Research Society. 44: 825‐834, 1998. 
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in the hospital and try to find trends and correlations through regression analysis. 
However, this analysis is complicated by such issues as changes in standards of medical 
care, changes in hospital partnerships and the fact of historical admittance data is 
saturated at the high end, meaning that when in-flow is the highest, it is not necessarily 
reflecting the full demand because people are being turned away to other hospitals.  

Original Problem Approach 

Working off previous research in the field4, we designed a diagram to explain the 
situation (Figure 1). We identified 4 sources of in-flows into the in-patient ward; the ER, 
the ICU, the surgical ward and through other institutions. We planned to use multiple 
years of historical data to look at daily admits and discharges to find patterns with any 
number of variables. Previous work shows effects due to weather, day of the week, 
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Figure 1 - Model of Original Project Problem. 

4 de Bruin, AM,  Van Rossum, AC, Visser MC, and Koole, GM. Modeling the emergency 
cardiac in­patient flow: an application of queuing theory. Health Care Management 
Science 10:125–137, 2007. 
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holidays, and macroeconomic changes among others5. You would find that some of these 
variables affected all four of the in-flow points, albeit in different degrees, while others 
may just affect the ER, like flu season, or the surgical ward, which is often empty on 
weekends. This process is referred to as "demand forecasting". 

To determine out-flow we could look at the discharges over time in the same way we 
looked at the admittances. However, we can also determine "predicted length of stay", 
which looks at the type of patient being admitted and calculates how long the likely 
hospital stay would be67. We requested a year of detailed individual patient data including 
race, age, gender, economic status (using the hospital bill payer as a proxy), discharge 
destination and, of course, primary and secondary diagnoses.  

To simplify the analysis, we would consider all of the in-patient beds as equivalent, 
ignoring that patients with different diagnoses would need to be sent to different floors, 
each with their own bed limitations. 

Problem Modification 

The original project described above proved to require more data than the hospital was 
willing to release. After talking with Dr. Y, we came up with a simplified model based on 
the data that was available to us. First, instead of looking at long-term bed occupancy, we 
would examine short-term occupancy. Second, we restricted our work to a single ward, 
the cardiac ward, which consists of 38 beds. Third, we would look at length of stay 
predicting only. This means that the in-flow would be given knowledge and we would 
use that with our model to determine the outflow (see Figure 2).  

Given Information and Assumptions 

On what we would call "census day" at 12:01 am all the patients currently on the cardiac 
ward would be known along with their date of admission. They would further be 
categorized into one of six ‘diagnoses’ 

1. Balloon catheterization 
2. Balloon catheterization with stenting 
3. Balloon catheterization with drug coated stenting 

5 Mackey M and Lee M. Choice of Models for the Analysis and Forecasting of Hospital 
Beds.Health Care Management Science 8, 221–230, 2005. 
6Mounsey JP, Griffith MJ, Heaviside DW, Brown AH, and Reid DS. Determinants of the 
length of stay in intensive care and in hospital after coronary artery surgery.British
Heart Journal73, 92‐98, 1995.
7Tu JV, Mazer CD, Levinton C, Armstrong PW, and Naylor CD. A predictive index for 
length of stay in the intensive care unit following cardiac surgery. Canadian Medical
Association Journal 151(2), 177–185, 1994. 
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4. Chest pain 
5. Circulatory disorders 
6. Cardiac arrhythmias.  

These six groups were chosen because they are the six most common reasons patients are 
at the Beth Israel cardiac ward.  

We would also be given a list of the dates scheduled surgical patients were expected to be 
admitted into the ward, each identified with one of those six diagnoses. We would 
assume that all scheduled patients would show up and be operated on successfully and 
thus be admitted into the cardiac ward. These two sets of data would thus make up the in­
flow into our cardiac ward. 
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Figure 2 - Model of Modified Project 

The data we got from hospital on which to build our model consisted of enough 
information to determine the mean and standard deviation of historical length of stays for 
people in those 6 diagnosis groups. We would need to use that to figure out what day we 
expected each of those patients to leave.  
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Model Preparation 

In thinking about the model, we felt it was important to build something that is both easy 
to use and widely applicable for BIDMC. The meetings with Dr. Y were used to discuss 
the concerns of the hospital and reveal the factors that were thought to contribute to those 
concerns. We understood the need for simplicity as well as the basic requirements for the 
various stakeholders using the model.  

We conducted research and found some papers addressing similar problems.  These 
papers included demand forecasting as well as length of stay predictions for various 
combinations of disease types, hospital settings, and wards within a hospital.  It was 
difficult to evaluate how much of this previous research would be applicable to the 
BIDMC’s cardiac ward considering characteristics such as hospital capabilities and even 
demographic combinations of the patients. After narrowing the project, this became even 
more complicated. Once it became clear that we would have access to less data than 
expected, we set out to build a model that could be easily modified to include more 
information as it is discovered.  

We chose to use Excel, which is prevalent and familiar to BIDMC’s staff.  If the model 
could be accessible and understood easily, then the chances of it being used would be 
higher. In addition, we designed the predictive model to be easily adaptable to other 
wards within the hospital, though some adjustments may be necessary for the unique 
characteristics of each ward. 

With these considerations in mind, we set the following plan.  First, we’d decide on a 
type of probability distribution for length of stay. Then, we would apply BIDMC’s data 
and calculate the probabilities of patients staying in the hospital for a given day.  From 
these probabilities, we determine the predicted number of beds that the cardiac ward can 
expect to need on that day. Finally, we calculate a confidence interval around this 
expected number to account for best and worst case scenarios. 

Model Creation 

From the myriad of available distributions, we decided that the lognormal distribution 
was most appropriate for our purposes8. It is commonly used in hospital length of stay 
models and is characterized by having a long-tail trend.  We believe that it is a reasonable 
assumption that BIDMC’s cardiac ward patients follow a similar distribution.   

The data provided by Dr. Y included the lengths of stay of a sample of patients for each 
of six diagnosis types discussed earlier, and is displayed below in Figure 3 and detailed in 
Appendix I. 

8Harper PR and Shahani AK.  Modeling for the Planning and Management of Bed 
Capacities in Hospitals. The Journal of the Operational Research Society, 53(1): 11‐
18, 2002. 
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[Figure 3 Redacted] 

To determine the average lengths of stay and standard deviations, we calculated the 
weighted mean and corresponding weighted standard deviations for each diagnosis. The 
values computed are listed in Table 1 below. 

Table 1: Calculated Length-of-Stay Mean and Standard Deviation by Diagnosis Type 
Diagnosis Mean SD 
1. Cardiac catheterization with drug-eluting stent placement 1.60 1.16 
2. Circulatory disorders 2.16 2.71 
3. Cardiac catheterization without stent placement 1.86 3.06 
4. Cardiac catheterization with bare metal stent placement 1.91 1.60 
5. Chest Pain 1.55 1.57 
6. Cardiac Arrhythmia 1.90 1.60 

To obtain our desired log-normal distribution, we need to calculate two parameters, µ 
andσ, which are derived from the expected value and variance of the dataset. (Despite the 
parameter symbols, µ and σ are not the mean and standard deviation in these equations.) 
We set E(X) to be the mean length of stay and Var(X) to be the variance and solve the 
equations below to find the µ and σ of each diagnosis. 

(Equation 1) 

(Equation 2) 

(Equation 3) 
Table 2: Calculated µ and σ values by Diagnosis Type 
Diagnosis µ σ 
1. Cardiac catheterization with drug-eluting stent placement 0.2558 0.6504 
2. Circulatory disorders 0.2972 0.9726 
3. Cardiac catheterization without stent placement (0.0382) 1.1460 
4. Cardiac catheterization with bare metal stent placement 0.3826 0.7293 
5. Chest Pain 0.0827 0.8407 
6. Cardiac Arrhythmia 0.3711 0.7341 

We then apply µ and σ to the log-normal formulas below to derive the six diagnosis-
specific probability distributions. 

(Equation 4) 

Probability Density Function: 
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Cumuulative Distrribution Fun ction: 

(Equation 55) 

With these six prrobability diistributions, we can deteermine the eexpected nummber of bedds 
needeed. We begiin by lookingg at the indiividual probabilities of eeach patient still being aat 
the hoospital on a given day x after the ‘ceensus day’. 

The pprobability that a patientt will be in tthe hospital on day x aftter his/her addmission datte 
is Pxx=1-F(x), whhere F(x) iis the log-nnormal cumuulative distrribution funnction of thhe 
patiennt’s indicateed diagnosis.. F(x) is the area under tthe curve foor the particuular diagnosiis 
type’s f(x), the loog-normal pprobability ddensity functtion derivedd earlier (seee Equations 4 
and 55). 

Becauuse patients are continuuously arriviing and depaarting the caardiac ward,, each patiennt 
has aa different arrrival date.  TThis means tthat at any giiven day, thee patients in cardiac warrd 
are at different ddays of theirr own lengthh of stay timme-frames.  In order to capture thesse 
probaabilities fromm a relevantt perspective, we need to extract eeach patient’’s probabilitty 
from his/her corrresponding day since addmission baased on the patient’s arrrival date (oor 
schedduled arrivall), the censuss date, and thhe desired ddate. The cennsus date is ddefined as thhe 
last ddate for whichactual annd completee bed informmation is givven. The deesired date iis 
definned as the daate for whichh we desire t o know the bbeds still oc cupied. Thenn, we need tto 
consiider the conditional probbability of ppatients whoo have been in the hosppital for morre 
than one day alrready. In thhese cases, tthe probability of that ppatient still being in thhe 
hospiital betweenn his/her admmission date  and the cennsus date is 100%. Thee calculationns 
for coomputing paatients’ likel ihood of beiing in the hoospital on thhe desired daate need to bbe 
renorrmalized andd are, therefoore, given byy the conditioonal probabiility of Bayees’ Theorem : 

(Equation 66) 

We uuse this methhod to indivvidually commpute the proobability of still being inn the hospitaal 
on thhe desired daate for each oof the existinng patients iin the cardiaac ward. Futuure scheduleed 
patiennts are addeed into the li st on the day of schedulled admittannce and afterrward use thhe 
same probability curves as thhe ‘census daay’ patients, with no neeed to renormaalize. 

To illustrate this  process, wee can examiine two patiient examplees.  We hyppothesize thaat 
BIDMMC would liike to knoww the likelihoood that twoo patients will still be inn the hospitaal 
three days from today. In this fictionnal scenario,, the first ppatient is addmitted todaay 
(censsus day) wiith a diagnnosis of carrdiac cathetterization wwith a bare  metal stennt 
placeement.  To d etermine thee likelihood that he will still be heree in three dayys, we simplly 
calcuulate the areea under thee curve of that diagnosis’s log-noormal probabbility densitty 
functtion for x greeater than 3 ((see Equatioons 4 and 5). 
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The second patient was admitted two days ago with the same diagnosis.  To determine 
the likelihood that she will still be here in three days, we compute the conditional 
probability (Equation 6) that she will be here 5 or more days, given that she’s already 
been here for 2 days. This is denoted as P(5|2) = P(2|5)*P(5)/P(2), in which P(2|5) equals 
1 (the probability of being in the hospital 2 days if you are still there on day 5 is 100%). 
Graphically, we represent this conditional probability as the area under the log-normal 
curve for x greater than 5 divided by the area under the curve for x greater than 2.   

In this manner, we can derive the probability of still being in the hospital for each patient. 
The sum of these probabilities is the total number of beds still occupied on that desired 
date. 

Confidence Intervals 

In addition to the predicted number derived from the model, we wanted to calculate 
confidence intervals around our prediction to give the hospital a more realistic range of 
number of occupied beds that our model expects. Because we are working with multiple 
different log-normal distributions (one per diagnosis), it is not immediately obvious how 
to calculate confidence intervals. From speaking to experts in statistics, we found that 
there are a couple of possible methods.  

The first method uses simulation software, such as Crystal Ball.  We can input the list of 
individual patient probabilities of being in the hospital on the desired date into the 
program.  The program then runs thousands of simulations of possible outcomes given 
those probabilities. From these simulations, we can directly see where 95% of the 
outcomes lie.  However, it turns out that this method is impractical for a couple of 
reasons. First, Crystal Ball requires quite a bit of manual manipulation of the data each 
time it is run, which is a lot of work on the hospital’s end. Second, if we rely on 
simulation software to determine confidence intervals, then we are unrealistically asking 
BIDMC to purchase the Crystal Ball software and train someone on staff on how to use 
it. Given this, we decided it would be better to build our model entirely in Excel. 

To do this, we searched for known statistical formulas that can give appropriate 
confidence interval estimations for log-normal distributions. We considered using 
Chebyshev’s Inequality, but decided against this after consulting with our experts.  We 
know we sum up PQ (probability*(1-probability)) for each individual patient probability 
to determine variance.  If we assume the distribution in normal, the 95% confidence 
interval is the estimated number of beds plus or minus two times the standard deviation. 

Using the Model 

As mentioned earlier, our goal was to make the model user friendly and adaptable to 
other wards in the hospital and improvements in the probability distribution calculations. 
It provides a simple foundation on which more complexities may easily be added for 
improved accuracy and situational parameters by simply modifying look-up tables.  But 
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for day to day use, the excel model only requires BIDMC staff to input census day patient 
information and scheduled patient information. Ideally, this would be added 
automatically from hospital records and the staff member would just check it over for 
errors. The desired date of interest would also be entered. The results are automatically 
calculated and presented as output, as well as a chart of the estimated number of beds still 
occupied on the 7 days after census day. Confidence intervals are represented by error 
bars around the daily totals (see Figure 4 as an example of this). 
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Figure 3 - This is a chart of the expected bed occupancy for the seven days after the given 
census day information from 11/21/2010. The error bars represent the calculated 95% 
confidence intervals. 

In the excel model, the input page asks for: 
•	 Means and Standard Deviations for each diagnosis 
•	 Census Date 
•	 Desired Estimation Date 
•	 Admission Date and Indication (diagnosis) for each patient currently in the ward. 

For the cardiac ward, this number is limited to the maximum 38 number of beds 
available. 

•	 Number of patients per indication per day scheduled to arrive after the census 
date. 

Notice that this information can be applied to any hospital ward outside of the cardiac 
department as well. 

The output page then immediately provides the following information: 
•	 Expected total number of beds still occupied on the desired date 
•	 Review of the census date and the desired date for input error-checking. 
•	 Expected number of beds being used by the ‘census day’ patients 

10 



• Expected number of beds being used by the scheduled patients 
• Confidence intervals for each of the three expected number calculations. 

Refer to Appendix IIfor images and further explanation of the excel model. 

Limitations of the Model 

Our model is based on several assumptions and the predictability is limited by the 
availability of the appropriate data needed to capture relevant dynamic variables. Based 
on our literature review and a critical analysis of the model and the supplied data, we 
have identified certain limitations.  

1.	 Patient demographic information.Patient specific information was not 
available, hence this information has not been considered as part of the model 
design. The relationship between the length of stay and patient attributes is 
very important for prediction accuracy. 

2.	 Random nature of ED patient flow.ER patient flow has not been used as an 
input in the model. The reason for exclusion was the BIDMC data was not 
available to us and any literature-based patient flow information would not 
have the needed diagnosis type associated with the patients. The 
simplification of patient flow from the OR and complete absence of ER flow 
after the census day is a limitation of the model. 

3.	 Uncertainty with the patient time length of stay.Our literature review led to 
the use of log-normal distributionsto calculate length of stay probabilities. 
This distribution was taken as a given in the model.The variability in the 
patient length of stay is unexplained. Since no information beyond the six 
‘diagnosis types’ was provided, the model does not contain other variables 
that might influence length of stay, such as secondary diagnosis and discharge 
destination. More information could make the probability distribution steeper, 
which would lead to a more accurate model with smaller confidence intervals. 

4.	 Time of day patient data.The patient data provided is based on a midnight 
census. This fails to capturehow the number of patients fluctuation over the 
course of a day. This means the model is unable to address periods of peak 
demand during a day, where new patients are being admitted before old 
patients are discharged. The staffing level and bed availability during the time 
of the day can be severely impacted by the patient flow above and beyond the 
inpatient bed capacity. 

5.	 Simplified aggregation of cardiac floor. One simplification with the analysis 
is that all the inpatient beds are considered capable of accommodating any 
patient, without consideration of underlying patient condition or cardiac 
operation performed. This is a limitation with the model as certain beds may 
not be capable of handling patients with some special needs. 
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6.	 Relationship with overall inpatient flow, the patient inflow and occupancy 
at cardiac floor is considered to be independent of the overall inpatient flow 
and bed capacity at other floors. This simplification fails to consider the 
interdependencies of patient flow and time length of stay between other floors.  

Next Steps 

The limitations identified in the previous section illustrate the potential aspects of the 
model which can further be improved and explored. This section highlights the path 
forward. 

1.	 Obtain detailed historical data. Detailed historical data will enable a more 
comprehensive predictive model depicting the actual trends at the cardiac in­
patient floor. Information containing following attributes will be extremely 
helpful.  
• Annual, monthly or weekly tends 
• Patient specific information (age, gender, etc.)  
• Operation procedure and 
• Underlying patient health condition  

2.	 Modeling of random ER patient flow into the cardiac ward.Inclusion of 
ER to cardiac ward patient flow will be important in improving the usefulness 
of our model. 

3.	 Modeling of uncertainty with the patient length of stay times.The ability to 
explain the variability in patient stay times will be significantly important in 
better predictive results. Future analysis of time length of stay variation with 
respect to patient demographics and medical condition is expected to 
significantly improve the model. 

4.	 Use of daily patient flow information instead of midnight census data will 
improve the peak demand modeling, as literature research indicates the daily 
patient in-flow can exceed the bed capacity at certain times of the day, before 
the daily out-flow of patients is completed. This trend is not captured by 
midnight census.  

5.	 Better classification of cardiacfloor beds will improve the precision of 
predictive model as not all beds are capable of accommodating different 
patient conditions. 

6.	 Inclusion of overall patient inflow in the model to capture the 
interdependencies of patient flow and time length of stay between cardiac and 
other floors. 

Summary and Conclusion 
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Hospital beds are expensive resources. Adequate demand forecasting for the resource is 
highly linked to the even more important resource, the medical staff. An aging 
population, increased prevalence of chronic diseases, on-going shortages of medical staff 
and increased patient expectations increase pressure to the hospitals and make effective 
use of the bed more important than ever for hospitals. Appropriate decision-making 
support tools for the planning and management of bed capacity is critical to successfully 
address the issues that hospitals face. 

Like other institutions, BIDMC is also experiencing the difficulties of hospital bed 
planning and management, which often leads to a crowded emergency room, surgical 
suites unable to be used because there is nowhere to put the patients after the surgery, and 
ICUs unable to take new critical patients, as well as mismatched staff scheduling. We 
initially intended to address the whole issues of bed management, from patient inflow 
demand forecasting to length of stay probability distribution for the entire in-patient ward 
at BIDMC. However, given the limitation of data accessibility, team modified the 
approach to more practical level by targeting only the cardiac ward and focusing only on 
length of stay analysis. 

Historical data ofindividual patient length of stays with the six most common diagnoses 
of the BIDMC cardiac ward was used to develop a probability distribution of length of 
stay, which can be used for both currently admitted patients and scheduled patients. The 
model can capture the probability of bed occupancy within short period times and thus 
can support some decision-making processes of hospital. 

Although the model can provide basic information for the planning and management of 
beds, it still has limitations mainly due to the lack of data availability. First, demand 
forecasting of patient inflow is missing in the model. Second, because we used 
aggregated averages and standard deviations of length of stay, the model does not take 
into account patient-level variations other than the primary diagnosis. Third, midnight 
census data does not account for patient flow within a day, which is critical information 
for staffing and other resource allocation. 

Despite these limitations, we believe that our approach to predicting short-term bed 
occupancy at BIDMC has made a meaningful first step, and we expect further research 
will improve the effectiveness and efficiency of our work.  
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Appendix I – Raw Patient Data 

[Redacted] 
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Appendix II – Excel Model

Excel Model “Input“ Page – Sample

LoS data per indication Å Shaded cells indicate data is to be provided 
(Filled with dummy data for modeling purpose) 

Code Mean SD Indication 

1 1.60 1.16 
Cardiac catheterization with drug‐eluting stent 
placement 

2 2.16 2.71 Circulatory disorders 
3 1.86 3.06 Cardiac catheterization without stent placement 
4 1.91 1.60 Cardiac catheterization with bare metal stent placement 
5 1.55 1.57 Chest pain 

6 1.90 1.60 Cardiac arrhythmia 

Census date 11/21/10 <‐‐assume Census at 00:00 at the date 
Desired estimation 
date 2 days after Census 

Current bed 
occupation 

Bed number Admission Indication 
1 11/20/10 1 
2 11/19/10 2 
3 11/18/10 3 
4 11/17/10 4 
5 11/16/10 5 

Scheduled patients 
Expected admission 
date 11/21/10 11/22/10 

Indication ‐ 1 
1 1 2 
2 5 2 
3 2  ‐
4 3 2 
5 2 1 

6 2  ‐
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1
2
3
4
5
6

Excel Model “LoS Prob Lognormal” Page – Sample 


Indication Mean SD Mu Sigma 
1 1.60 1.16 0.2558 0.6504 
2 2.16 2.71 0.2972 0.9726 
3 1.86 3.06 (0.0382) 1.1460 
4 1.91 1.60 0.3826 0.7293 
5 1.55 1.57 0.0827 0.8407 
6 1.90 1.60 0.3711 0.7341 

Probability assuming lognormal: cumulative density function (Fx) 

LoS being equal or less than… 
Indication 0 1 2 3 4 

1 ‐ 0.3470 0.7494 0.9025 0.9589 
2 0 0.3799 0.6580 0.7950 0.8686 
3 0 0.5133 0.7383 0.8394 0.8931 
4 0 0.2999 0.6649 0.8369 0.9156 
5 0 0.4608 0.7661 0.8866 0.9395 
6 0 0.3066 0.6695 0.8391 0.9166 

Probability assuming lognormal: 1‐cumulative density function (1‐Fx) 

LoS being more 
than… 

Indication 0 1 2 3 4 
1.0000 0.6530 0.2506 0.0975 0.0411 
1.0000 0.6201 0.3420 0.2050 0.1314 
1.0000 0.4867 0.2617 0.1606 0.1069 
1.0000 0.7001 0.3351 0.1631 0.0844 
1.0000 0.5392 0.2339 0.1134 0.0605 
1.0000 0.6934 0.3305 0.1609 0.0834 
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Excel Model “Bed Occupancy” Page ‐ Sample


LoS 
to… 

P of 
staying 

Probability of LoS being more than X 
days after census 

Admission Census Census 
Des. 
date Indication 

at 
Census 0 1 2 3 

Bed number 
1 11/20/10 11/21/10 1 3 1 0.6530 0.6530 0.2506 0.0975 0.0411 

2 11/19/10 11/21/10 2 4 2 0.3420 0.3420 0.2050 0.1314 0.0886 

3 11/18/10 11/21/10 3 5 3 0.1606 0.1606 0.1069 0.0753 0.0552 

4 11/17/10 11/21/10 4 6 4 0.0844 0.0844 0.0463 0.0267 0.0160 

Newly admitted on Census or after 

Probability 
Expected 
admission date 11/21/10 11/22/10 
Days after 
Census ‐ 1 

Indication 
Admission to 
desired date 2 1 

1 0.2506 0.6530 
2 0.3420 0.6201 
3 0.2617 0.4867 
4 0.3351 0.7001 
5 0.2339 0.5392 
6 0.3305 0.6934 
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Excel Model “Output” Page – Sample


Summary output 

Expected total bed needed, as of (desired date): 11/23/2010 

Estimated given data as of (census date): 11/21/2010 

Total estimated bed needs: 21.6 

Approximate estimation of 2 standard deviation: 7.2 

Min Max 

95% confidence interval (combined): 14.4 28.9 

Bed needs from existing patients only 

Indication Needs 
1 1.39 

2 2.80 

3 2.96 

4 1.86 

5 1.95 

6 1.58 

Total 12.54 

Min Max 
95% confidence interval 6.8 18.3 

Bed needs from scheduled patients only 

Indication Needs 
1 1.56 

2 2.95 

3 0.52 

4 2.41 

5 1.01 

6 0.66 

Total 9.10 

Min Max 
95% confidence interval 4.7 13.5 

18 



MIT OpenCourseWare
http://ocw.mit.edu 

ESD.69 / HST.926J Seminar on Health Care Systems Innovation 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

