ESD.36 System Project Management

Lecture 6

Instructor(s)

Dr. James Lyneis

System Dynamics Experience Survey

Have you taken ESD.74, or 15.871 and 15.872?

- A Yes
- B No
- C Currently taking

Today's Agenda

- Project problems viewed dynamically
- Understanding dynamics: the system dynamics methodology
- Overview of system dynamics module
- Vensim

Today's Agenda

- Project problems viewed dynamically
- Understanding dynamics: the system dynamics methodology
- Overview of system dynamics module
- Vensim

Project Dynamics

- What does "dynamic" mean in the context of a project?
- Sketch "desired" (or planned) and typical actuals for following performance measures ...

Sketch Plan and Actuals for ...

Project Staffing

Time

Sketch Plan and Actuals for ...

Trouble-free Projects Behave as Planned:

But on more typical developments ...

Overrun on a Semiconductor Design

SEMICONDUCTOR DESIGN

Planned & Actual Project Progress

Actual

Week 0 Plan

Week 33 Plan

Week 54 Plan

Week 66 Plan

70

[©] Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Overrun on a Semiconductor Design

SEMICONDUCTOR DESIGN

Planned & Actual Project Progress

[©] Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

+

Overrun on a Semiconductor Design

SEMICONDUCTOR DESIGN

Planned & Actual Project Progress

[©] Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

On typical development projects ...

© 2001 John Wiley & Sons, Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Program Staff, Simulated vs. Data (Equivalent Staff) Simulated - Original Plan ······ Actual 400. Disguised results from actual vehicle project 300. O<u>r a second</u> 200. staffing peak 100. 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 TIME

© 2001 John Wiley & Sons, Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Progress has been made: Many firms have cut development times in half ...

Image removed due to copyright restrictions.

Source: Smith, Preston G. and Donald G Reinersten, *Developing Products in Half the Time* (2nd edition), Wiley 1998.

But project overruns persist in spite of numerous advances in the last 50 years

- PERT and Critical Path Method
- Waterfall, Spiral, ...
- Emphasis on "soft," people factors
- Microsoft Project
- .. and **Learning** is not happening *Why???*

Why do projects overrun their budgets and/or schedules?

Why? – Notes from Prior Classes

- Unrealistic schedule and/or budget
 - Poorly defined objectives
 - Schedule too aggressive
 - Inadequate funding
- Changing and/or growing system requirements
- "Complexity" design uncertainty
- Politics/conflicting agendas (management, customers)
- Resource shortages
- Inappropriate skills mix/ high attrition
- Inappropriate processes

Characteristic: externally focused – others did it to us!

System Dynamics Viewpoint

While external events are a fact of life on projects, project performance problems are fundamentally dynamic problems that result from attempts to manage in the face of change and uncertainty.

System Dynamics Viewpoint

Managers mental models and typical tools (computer models) are not helpful in understanding dynamics:

- Attribute problems to external factors
- View a project statically (no iteration, no feedback)
- Treat projects as if they were unique

Project Control

You're managing a 12-month project, and at ~30% done you realize that changes and scope growth have put your project ~25% behind schedule ...

What do you do? Schedule is the top priority; cost the second priority.

What do you do at ~30% complete?

What is your (company's) response? Put a 1 next to your primary response, at 2 next to your secondary response, and so on. If you would not use a response, leave it blank, otherwise try to rank the options even if you rarely use them in practice.

- 1. Add people?
- 2. Work longer hours?
- Work more "intensely" (including cutting corners, increasing concurrency, releasing work earlier than ideal)?
- 4. Slip the schedule?
- 5. Cut scope?
- 6. Other?

Project Control

You're managing a 12-month project, and at ~65% done you realize that changes and scope growth have put your project ~25% behind schedule ...

What do you do? Schedule is the top priority; cost the second priority.

What do you do at ~65% complete?

What is your (company's) response? Put a 1 next to your primary response, at 2 next to your secondary response, and so on. If you would not use a response, leave it blank, otherwise try to rank the options even if you rarely use them in practice.

- 1. Add people?
- 2. Work longer hours?
- Work more "intensely" (including cutting corners, increasing concurrency, releasing work earlier than ideal)?
- 4. Slip the schedule?
- 5. Cut scope?
- 6. Other?

Today's Agenda

Project problems viewed dynamically

- Understanding dynamics: the system dynamics methodology
- Overview of system dynamics module
- Vensim

What is System Dynamics?

- Theory of Structure of Systems Creating Behavior
 - Feedback loops
 - Stocks and flows
- Scientific method applied to social and economic systems
 - Iterative, focus on testing and learning
 - Working with "clients" to solve problems
- Tools & Tricks & Software to Make Modeling Easier

Examples of Dynamic Behavior

What Causes Dynamics?

All dynamics are driven by -

- Accumulation processes
- Feedback processes

Accumulation processes involve ...

Stocks or "levels" -- define the state of the system

Resources

Flows or "rates" -- define the rate of change in system states

Connecting stocks and flows ...

"Clouds"
represent
stocks outside
the model
boundary

Stocks = Levels = States = Accumulations = Integration

Math behind Stocks and Flows

$$S_t = \int_{t_0}^t (Inflow - Outflow) ds + S_{t_0}$$

$$\frac{dS}{dt} = Inflow - Outflow$$

Stocks and Flows

Water in Tub

- Inflow > Outflow: Quantity in tub is rising
- Inflow < Outflow: Quantity in tub is falling</p>
- Inflow = Outflow: Quantity in tub is constant

Estimating accumulation dynamics – "graphical integration"

Two-flow Stock:

Condense to One Flow:

Sketch Resources if Hiring cycles between 0 and 10?

"Hire-Fire Rate" : Cycle _____ Tasks/Month

Triangular Hire-Fire Rate

"Hire-Fire Rate" : Triangle Flow — People/Month Resources : Triangle Flow — People/Month

Equations for Discrete Integration

Resources (t+dt) = Resources (t) + dt * (Hire-Fire Rate $t \rightarrow t+dt$)

 $dt = "delta time" = \Delta t = Time Step (term used in Vensim)$

In Vensim:

Resources = INTEG(Hire-Fire Rate)

Note: In Vensim PLE 6.0 the INTEG appears to have been dropped!

Massachusetts Institute of Technology

Please review draft textbook Chapter SD1, section SD1.2.1 (pages 7-16), for details and examples on graphical integration, discrete integration, and the behavior of stocks.

What are typical stocks & flows on a project?

Stocks

Flows

Stocks and Project Management

A company's resources are stocks:

Management can only affect project performance by building resource levels, and this can only be achieved by actions that affect inflows and outflows

What Causes Dynamics?

All dynamics are driven by -

- Accumulation processes
- Feedback processes
 - Balancing
 - Reinforcing

System Dynamics Tools

"Soft" tools --

- behaviour-overtime graphs
- cause-effect diagramming
- mental simulation

Tools for describing dynamics

"Hard" tools --

- computer models
- computer simulation (Vensim)
- calibration to data
- sensitivity and what-if analyses

Tools for quantifying dynamics

Causal loop diagrams -- causal links

An arrow with a positive sign (+) means that, all else remaining equal, an increase (decrease) in the first variable increases (decreases) the second variable above (below) what it would otherwise have been.

Causal loop diagrams -- causal links

An arrow with a positive sign (+) means that, all else remaining equal, an increase (decrease) in the first variable increases (decreases) the second variable above (below) what it would otherwise have been.

> **Work Rate** Resources

An arrow with a negative sign (-) means that, all else remaining equal, an increase (decrease) in the first variable decreases (increases) the second variable below (above) what it otherwise would have been.

Productivity

Fatigue

Exercise -- link and loop polarity

Causal loop diagrams -- loop polarity

- Reinforcing loops -- loops with all positive or an even number of negative causal links ("positive" loop to engineers)
- Balancing loops -- loops with an odd number of negative causal links ("negative" loop to engineers)

Reinforcing or Balancing?

Reinforcing or Balancing?

Combining ...

A Computer Model ...

Details of this example are in Appendix SDA V3.pdf

Change in Resources = (Indicated Resources - Resources) / Time to Adjust Resources Indicated Resources =
(Total Tasks to Do-Tasks
Done) / Time
Remaining) /
Productivity

Simulating

Tasks Done and Resources

Tasks Done : Negative Control - No Scope Growth — Tasks
Resources : Negative Control - No Scope Growth — People

Response to Increase in Tasks to Do (20 @ Month 5)

50

Simulating in Response to Increase in Tasks to Do (20 @ Month 5)

Tasks Done and Resources

Tasks Done: Negative Control - Scope Growth **Tasks** Resources: Negative Control - Scope Growth People

Resources/Initial

Resources

Adding reinforcing side effect loop

Simulating ...

Tasks Done and Resources

200 Tasks

10 People

1 Tasks/(Month*Person)

100 Tasks

7 People

0.8 Tasks/(Month*Person)

0 Tasks

4 People

0.6 Tasks/(Month*Person)

Tasks Done: Side Effects - Scope Growth

Resources: Side Effects - Scope Growth

Productivity: Side Effects - Scope Growth

Tasks
People
Tasks/(Month*Person)

→ change in the behavior of the project as a result of our attempts to manage (achieve a schedule) in the face of the external change (increase in scope).

Survey Question

- In your organization, what do you estimate is the relative contribution of the direct costs of External Changes and the costs of Management Responses to project overruns:
- Costs of External Changes greater than costs of Management Responses
- Costs of Management Responses greater than costs of External Changes
- Costs of both about same
- 4. Varies too much by project to say for sure

Interacting positive and negative feedback loops of cause-effect relationships, with stocks, flows, delays, and non-linearities, are capable of generating all observed modes of behavior.

Today's Agenda

- Dynamic project problems
- Understanding dynamics: the system dynamics methodology
- Overview of system dynamics module
- Vensim

What is SD useful for?

- Conceptualization of project dynamics and the issues/tradeoffs involved in strategic management of projects
- Quantification of above ...
 - Hueristics
 - Specific forecasts and decision guidance
- Project-to-project learning

Purpose of system dynamics module

Managing the drivers of cost and schedule overrun ...

- Insight into project dynamics, and impact of management actions
- Introduction to tools for describing and for quantifying dynamics
- Develop two (simple) models of project dynamics
- Managing projects "strategically"

Uses of System Dynamics Models in Strategic Project Management

- Project estimating, planning, and risk assessment
- On-going project management
- Pricing mid-project changes & dispute resolution
- Learning

How can we best balance cost, schedule, scope, and delivered quality on a project?

Next SD Classes

- SD#2 Project dynamics the rework cycle
 - HW#3 Rework Cycle model & analyses
- SD#3 Project dynamics -- feedbacks
- SD#4 Analyses of strategic project management issues
 - HW#5 Use model to explore planning and project control issues
- SD#5 Cases, Multi-project

Important Administration

Send me your model file if you have specific technical questions.

Today's Agenda

- Dynamic project problems
- Understanding dynamics: the system dynamics methodology
- Overview of system dynamics module

Vensim

Vensim Familiarization (for HW#3 & HW#5)

- Get started with Vensim
 - Work through Vensim Tutorial Under Draft Book Chapters (Appendix SDA V3.pdf).
 - Ask a colleague who took ESD.74 or 15.874 (now 15.871&2)?
- Download Vensim PLE
- Don't hesitate to email me (include you model – "dot" mdl – file); do not waste time on Vensim problems.

MIT OpenCourseWare http://ocw.mit.edu

For inforation about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.