
Network Models and Basic Network Operations

Notes by Daniel Whitney
January 3, 2008

Introduction

 Networks are arrangements of things and connections between them. The things can be
physical, such as cities or people, or they can be abstract such as tasks in a process like
designing a product. The connections can be physical, like roads between cities or blood
relationships between people, or they can be abstract like “sister cities,” friendships
between people, or information flows between design tasks. In general, networks can
represent systems, where the systems consist of things and their inter-relationships.
Network representations can themselves be quite abstract, conveying little about the
interconnected things or the connections. Or they can be more specific, identifying or
differentiating between the things and between the connections. The things can be given
names, levels of importance, size, etc., and the connections can be given lengths,
capacities, probability of breakdown, etc.

Networks can be represented graphs containing nodes (the things) and links (the
connections). If the links are two-way they are called edges; if they are one-way they are
called arcs. There is a large body of theory called Graph Theory that deals with the
properties of graphs.

Graphs and networks have a long history, dating to the time of the mathematician
Euler. He represented the bridges of the city of Königsberg as a graph in 1736 and
proved that it is impossible to walk over all the bridges without walking on at least

one of them twice. See Images removed due to copyright restrictions.

Figure 1.

 .
Images removed due to copyright restrictions.

Figure 1. The Bridges of Königsberg. Left: The map. Center: Abstraction of the
map. Right: Network representation. The blue nodes represent land and the black
links (edges) represent the bridges. Source:
http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Since that time, graphs have been used to represent transportation and communication
networks, [Ahuja, Magnanti, and Orlin] social relationships, [Wasserman and Faust]
ecological food webs, and partial order relationships such as priorities or constraints,
among many other things. In turn, transportation networks have been analyzed to find
shortest paths or maximum capacity paths. Social networks have been analyzed to find
social groups or cliques, leading individuals, or patterns of relationships. Mathematical
constraints have been analyzed to find means for solving equations. Physical systems
and supply chains have been analyzed to find “modules.” Food webs and communication
networks have been analyzed to determine their health and robustness.

Graph theorists and network analysts have developed a number of metrics to characterize
networks. Along with these metrics are algorithms for calculating them. We will use
Matlab to do these calculations where-ever possible. However, there is no complete set
of calculating tools available, in part because new metrics and analytical methods keep
getting invented. On the web one can find many matlab toolboxes containing graph
analysis tools. In addition, there are several closed toolboxes. Prominent among these
are UCINET and Pajek. UCINET is a set of social network analysis tools and is
available for a modest fee from http://www.analytictech.com/. It also contains Netdraw,
a convenient network visualization tool. Pajek is available free from http://vlado.fmf.uni-
lj.si/pub/networks/pajek/ It provides a number of network analysis tools and drawing
capabilities. Pajek and UCINET run on PCs and Pajek runs on Linux. Neither runs on a
Mac. Matlab is available for every platform. Network analysis in Matlab is limited in
three ways. One is the size of networks that can be stored. The second is the speed of the
calculations. The third is the lack of a really good visual representation tool. Pajek in
particular boasts of its ability to contain and analyze huge networks. Both Netdraw and
Pajek have very good representation tools. Only recently have huge networks become
available for analysis (the internet, Facebook, both having millions of nodes). Most real
networks are much smaller. Matlab has the advantage that we can write our own
algorithms or borrow from toolboxes on the Matlab web site or elsewhere on the web.

Network Representation Using Matlab

Networks can be represented conveniently using a matrix called the adjacency matrix.
The rows and columns are numbered to represent the nodes, and a mark, usually the
number 1, is placed at the (i,j) intersection if there is an arc from node i to node j. If the
link is two-way then a mark is also placed at intersection (j,i). The matrix is then said to
be symmetric. Intersections where there is no link contain the number 0. A graph with
all two-way links is called undirected and the corresponding adjacency matrix is
symmetric. If the graph has all one-way links, the graph is called directed and the
adjacency matrix is asymmetric. A graph with both one-way and two-way links is called
mixed. The adjacency matrix is asymmetric.

Matlab is an array-oriented system and is well-suited to represent matrices. In Matlab,
anything contained in […] is an array. Arrays can be created by typing them in directly

http://www.analytictech.com/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/

or they can be read from files. The files can have different delimiters between the entries,
such as commas, spaces, or tab characters. Matlab usually can determine what the
delimiter is, so one can use the command dlmread to bring an array in and use dlmwrite
to write it out. Arrays stored as comma-delimited (.csv) can be created using Excel.
Tab-delimited arrays can be created in Word or a text editor. 1

Matlab can also read and write Lotus 1-2-3 formats called wk1 using wk1read and
wk1write. This is convenient because UCINET can also read and write wk1 files. Excel
matrices can be pasted directly into UCINET and UCINET can read Excel files.

Here is an example of array creation directly in Matlab:

>> row1=[1 2 5 8]
row1 =
 1 2 5 8
>> row2=[10 6 5 9]
row2 =
 10 6 5 9
>> matrix1=[row1;row2]
matrix1 =
 1 2 5 8
 10 6 5 9
>> matrix2=[row1 row2]
matrix2 =
 1 2 5 8 10 6 5 9

Table 1. Making Arrays in Matlab
The above shows that the elements of a row are separated by spaces. Also, rows can be
stacked by separating them with ;. Rows stacked this way must be of the same length.
(Note: If you don’t want Matlab to print on the screen the output of any line, end the line
with a semicolon (;)).

Data Input

Typing in a large matrix is really tedious and prone to errors. Two standard alternatives
exist, called the node list and the edge list. A node list is a list of each node and the
nodes that it connects to with outgoing links. An edge list is a list of the edges containing
the nodes linked by them, with the “from” node listed first. It is fairly easy to take a
drawing of a network, number each node, and prepare a node list, checking off each edge
on each node as one goes through the network.

1 Any time you want to understand what a matlab routine or command does, just make up
a simple vector or matrix having 5 or 10 elements and use the routine or command on it.
Make sure you choose something simple so that you can see by yourself what the answer
should be or so that you can trace the results and understand them.

Figure 2 contains examples of a node list and an edge list:

 1 2
 1 8
 1 43
 1 49
 1 50
 1 51
 1 52
 1 53
 1 54
 1 55
 2 3
 2 9
 2 44
 2 56
 3 4
 3 10
 3 45
 3 57
 3 58
 4 5
 4 11
 4 46
 4 59
 4 60

Figure 2. Left: A node list put into Excel. The source node numbers are in column
A and the destination nodes are listed to the right. An arc extends from the source to
each destination. In this case the network is symmetric: Node 2 is a source for node
8 and node 8 is a source for node 2. Right: An edge list. In the first column are
source nodes. Each edge is listed separately and its destination node is in the second
column. Thus node 1 is the source for 10 different nodes. This list is evidently not
symmetric, since node 2 is a destination for node 1 but node 1 is not a destination for
node 2.

Once Matlab has the nodelist or edgelist, one can use routines called adjbuildn or
adjbuilde to create an adjacency matrix from the lists.

1

2

34

5

Figure 3. Top: Example Matrix. Bottom: Its nodelist and edgelist. The nodelist is
saved as testmatrix.csv while the edgelist is saved as testmatrix2.csv

Here is the way the nodelist is read in by Matlab and converted by adjbuildn to the
adjacency matrix testadj:

>> test=dlmread('testmatrix.csv')
test =
 1 2 5
 2 4 0
 3 1 0
 4 5 0
 5 2 0
>> testadj=adjbuildn(test)
testadj =
 0 1 0 0 1
 0 0 0 1 0
 1 0 0 0 0
 0 0 0 0 1
 0 1 0 0 0

Table 2. Using adjbuildn
Here is the way the edgelist is read in by Matlab and converted by adjbuilde to the (same)
adjacency matrix testadj2. The routine adjbuilde creates it as a sparse matrix, to save
space. The command full is used next to convert it to a full matrix using the Matlab

command full.2 The sparse representation holds and displays only the non-zero entries,
along with the (i,j) where they occur. Since most networks have far more nodes than
edges, most adjacency matrices have only a few non-zero entries, so sparse representation
saves processing time and storage space when there are very many nodes, say thousands
or tens of thousands.

test2=dlmread('testmatrix2.csv')
test2 =
 1 2
 1 5
 4 5
 2 4
 5 2
 3 1
>> test2adj=adjbuilde(test2)
numnodes =
 5
num_edges =
 6
test2adj =
 (3,1) 1
 (1,2) 1
 (5,2) 1
 (2,4) 1
 (1,5) 1
 (4,5) 1
>> test2adj=full(test2adj)
test2adj =
 0 1 0 0 1
 0 0 0 1 0
 1 0 0 0 0
 0 0 0 0 1
 0 1 0 0 0

Table 3. Using adjbuilde
Since the network is directed, the resulting adjacency matrix is not symmetric.

Several other routines are available for helping input and output. For example, adj2pajek
converts an adjacency matrix to the input format needed by Pajek.

2 Some Matlab functions do not work on sparse matrices. The error messages can be
cryptic but usually mention “sparse” so that is your clue. For example, you can’t make a
histogram of sparse data.

Simple Matrix Operations

Here are a few useful facts about Matlab operations on matrices:

A’ = the transpose of A
sum(A) adds up each column and stores the result as a row vector
sum(A’) adds up each row and stores the result as a row vector
sum(sum(A)) adds up all the entries in A
length(x) counts the number of entries in vector x
size(A) lists the lengths of the dimensions of matrix A. If A is 3x4 then size(A) = 3 4 .
If you want the size of A’s kth dimension, use size(A,k). In the above example
size(A,2) = 4 .

Table 4. Matlab Operations on Matrices

Logical Operations and Extraction of Submatrices

find(x logical expr) returns the subscripts of entries in x that satisfy the logical expression
using linear indexing. (Linear indexing gives every entry one subscript.) The answer,
when placed in x(ans), returns the values of x corresponding to the subscripts.
length(find(x logical expr)) tells how many entries in x satisfy the logical expression
[i,j]= find(x logical expr) returns the i and j subscripts of entries in matrix x that satisfy
the logical expression
unitize(A) makes all the non-zero entries in A equal to 1.
Here are some examples using row1 and testadj from Table 1:
>> find(row1>1)
ans =
 2 3 % the 2nd and 3rd entries of row1 satisfy the condition that they are > 13

>> row1(ans) % the value of “ans” is whatever was last output
ans =
 2 5 % these are the 2nd and 3rd entries of row1

Table 5. Use of Logical Expressions
Note that the result of a logical operation like find is a logical matrix, not a numerical
matrix, so you can’t do arithmetic on the result. This makes it useless for many of the
calculations described below. You can convert a logical matrix into a numerical one
simply by adding 0: . The unitize routine makes use of this:

B
B = B+ 0

3 % is the delimiter that begins a comment in Matlab.

function unitize=unitize(A)
% unitizes a matrix, makes all non zero entries = 1
unitize = A > 0; % entries of unitize are logical 1 where A
> 0
unitize = unitize + 0; % now entries of unitize are
numerical 1 where previously they were logical 1

The syntax is Au = unitize(A)

The following examples show how to extract a range of entries from an array:

>> testadj(1,:) % the : represents the entire row, so it says to extract row 1
ans =
 0 1 0 0 1
>> testadj(:,2) % the : represents the whole column, so it says to extract column 2
ans =
 1
 0
 0
 0
 1
>> testadj(2:5,2:5) % this extracts rows 2 – 5 and columns 2 - 5
ans =
 0 0 1 0
 0 0 0 0
 0 0 0 1
 1 0 0 0

Non-adjacent elements of a matrix may be extracted as follows:

>> A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 22 23 24 25]
A =
 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
 21 22 23 24 25

>> idx=[3,5]
idx =
 3 5
>> A(idx,idx)
ans =
 13 15
 23 25
>>

The array idx is used as an argument in matrix A to extract all the entries in A that are
combinations of the individual entries in the array idx. So the (3,3), (3,5), (5,3), and (5,5)
entries of A are extracted by the above code. For example, if A were a network
adjacency matrix, then A(idx,idx) would be the submatrix containing the links between
the nodes listed in idx, in this case, between nodes 3 and 5.

Basic Facts About Undirected Graphs

Undirected graphs have symmetric adjacency matrices. The number of rows in the
matrix is the number of nodes, while the number of non-zero entries in the matrix is twice
the number of edges. If a row and column of the matrix have no entries then the
corresponding node has no edges and is called an isolate. The number of edges on a
node, called the average nodal degree, is denoted by k and the average number of edges
per node in the network is alternately denoted < k > (which is typical statistics notation)
or by (this is typical physics notation, used by the many mathematical physicists who
have entered the network field.) If is the number of nodes and is the number of
edges, then

z
n m

 Equation 1 < k >= z = 2m
n

Each network has a degree sequence, which is simply a list of the nodes giving their
respective degrees: . Sometimes this list is sorted with the largest degree
first. In an undirected graph, the sum of the members of the degree sequence is an even
number:

D = [d1,d2,K]

dk
k
∑ = 2m . The degree sequence D of an undirected network whose adjacency

matrix is can be obtained in matlab as A

 Equation 2 D = sum(A)

From the above equations,

 Equation 3 sum(sum(A)) = 2m

1

2

34

5

Figure 4. Example Undirected Network

The function kvec(A) finds the degree sequence using Equation 2. The syntax is
kvA = kvec(A) where is the adjacency matrix and is the name of the resulting
degree sequence. For the network in Figure 4, the (sorted) degree sequence is

, whose sum is 12. For this network

A kvA

D = [3 3 3 2 1] < k >=12 /5 = 2.4 . A list can be
sorted in Matlab using its sort routine. To sort in descending order, use
Dsorted = sort(D,'descend'); To sort an adjacency matrix so that the first row has the
node with the most edges, use the routine sortbyk: Asorted = sortbyk(A); To visualize a
degree sequence, use Matlab’s plot routine. The result of doing this on a random matrix
with 1000 nodes and < k >= 5 is shown in Figure 5:

Figure 5. Plot of the Sorted Degree Sequence of a Random Matrix

Not all sequences of numbers are valid degree sequences, even if they add to an even
number because the edge list and the node list must be consistent. The Erdös-Gallai
theorem performs the necessary calculations and the function isgraphic implements them.
The syntax is isgraphic(D) where D is the degree sequence to be tested. If it passes, the
answer is 1 (meaning true in Matlab notation), otherwise the answer is 0 (false).

Network Metrics

In this section we calculate basic measures of a network, such as the number of nodes,
edges, average nodal degree, and others defined as we go.

The routine numnodes calculates the number of nodes:

function numnodes=numnodes(A)
%finds number of nodes in A including isolates
numnodes=size(A,1);

If you want to exclude any isolates, use numnonisonodes:

function nodes = numnonisonodes(A)

% counts non-isolated nodes in a matrix
A=unitize(A+A');
nodes=min(length(find(sum(A')~=0)),length(find(sum(A)~=0)));

To find the number of edges, we showed above that it is just sum(A). But if the network is
mixed (having some directed and some undirected links) then we can find the sum of
directed and undirected by making the adjacency matrix symmetric first:

function numedges = numedges(A)
%counts edges in matrix A, symmetric or not
%works when not all nodes have edges
AT=A+A';
numedges=sum(sum(AT~=0))/2;

To see if a matrix is symmetric, use Matlab’s issymmetric function: issymmetric(A) . The
answer will be 1 if A is symmetric and 0 if not.

The clustering coefficient is a metric that seeks to measure the extent to which nodes are
linked to each other. It is one of many metrics that seek to do this in one way or another.
Its origins are in the social network community where the goal is to see how many of your
friends are friends; that is, how many of the nodes linked to a node are linked to each
other? The essence of the calculation is to see how many potential triangles are in fact
complete. Newman’s review paper shows that there are in fact two similar ways to
calculate this, as indicated in Figure 6.

Image removed due to copyright restrictions.

Figure 6. Illustrating the two ways to calculate the clustering coefficient [Newman]
The Matlab routine library for ESD.342 contains two routines called respectively
clustEq3 and clustEq5. The text of the first is below, while the opening lines of the
second follow. clustEq5 returns the Newman value if it is invoked simply as clustEq5. It
returns three items if invoked as [clustNewman,clustSchneiderman,clustbynode] =
clustEq5(A). The last item is Newman’s equation 5, the local clustering coefficient of
each node. If the matrix is large then this will be a big list. To suppress printing of this
list, put a ; at the end of the call.

function clust3=clustEq3(B)
% finds clustering coefficient according to Eq 3 in Newman
review paper
tr=0;
for i = 1:size(B,1)
if sum(B(i,:))>1
tr(i)=nchoosek(sum(B(i,:)),2); %finds number of connected

triples of each node
end
end
triangles3=sum(.5*diag(B^3)); %finds 3*number of triangles
clust3=triangles3/sum(tr);

function [clustNewman,clustSchneiderman,clustbynode] =
clustEq5(A)
% calculates the clustering coefficient according to Eq 5
in Newman review paper
%
% adapted from code by Ed Schneiderman of Johns Hopkins U.
% Schneiderman calculates the average clustering coefficient
ONLY for those
% vertices where the number of neighbors is >1. Newman
calculates it for all vertices.

Another interesting property of a graph is the average shortest distance between nodes.
Included in this is the concept of network diameter, which is the largest of shortest
distances between all pairs of nodes. Calculating true shortest distances can be
computationally intensive, requiring a shortest path algorithm. Simpler methods can be
use if the graph obeys some assumptions. Chief among these is that the distance between
adjacent nodes is taken to be unity. This will not do for geographic networks like roads
or railways but it works for social interactions or other unweighted binary relationships.

If adjacent nodes are separated by unit distance, then the distances between all pairs of
nodes can be found by taking powers of the adjacency matrix. If a unit entry in a(i, j)of
adjacency matrix A means that nodes i and j are directly adjacent, then a non-zero entry
in a2(i, j) of A2 = A2 means that there is a two-step path from i to j. Similarly, a non-
zero entry in a3(i, j) of A3= A3 means that there is a three-step path from i to j. (The
clustering coefficient routines find triangles, three-step paths from node i to itself, by
finding non-zero elements in the (or diagonal entries in i,i) A3.) If we observe every
element ak(i, j) in successive Ak and note the value of k at the moment each element
becomes non-zero for the first time, we can tell when the first path of length k has been
established between nodes i and j. This first path is the shortest, since no shorter one
appeared during the process. The routine distmat uses this method, which is described on
page 151 of [Wasserman and Faust]. The first few lines of distmat are:

function [diagdist,avgpath,diam] = distmat(B)
% Routine to find the distance matrix of symmetric adjacency
matrix B
% and then calculate the average distance between all pairs
of nodes.
% Matrix B cannot have any isolated nodes and must have
entries = 0 or 1.

Diagdist is the matrix of distances, which can be large if the network is large. Avgpath is
the average of all shortest paths and diam is the diameter of the network. For the network
in Figure 4, the result of applying distmat is

[d,e,f]=distmat(As)
d =
 0 1 1 2 1
 1 0 2 1 1
 1 2 0 3 2
 2 1 3 0 1
 1 1 2 1 0
e =
 1.5000
f =
 3

distmat can be used on any network, but analytical solutions can be written if the network
has a regular structure. Leonard Miller, late of NIST, found such solutions for a variety
of regular lattices in the interests of understanding cell phone network performance,
where the number of hops between antennas or central stations is important in signal
quality. For example, for a rectangular grid of nodes, the average hop distance NxM m
between any pair of nodes is

 Equation 4 m = M + N
3

Function distmat works only if the network is connected. If a network is disconnected
then one has to find all the isolated components and separately calculate their diameter
and average path length. Before discussing how to find these components, we will show
how to find out if a network is connected. The relevant routine is called isconnected and
its use on the network in Figure 4 gives

isconnected(As)
ans =
 1

The first few lines of the routine are

function yn = isconnected(g)
% isconnected(g) -- determine if g is a connected graph
% Gives the right answer only if g is undirected
% Works by asking if node 1 can be reached from every node

If the network is directed, then routine isconnectedasym must be used. The first few lines
of this routine are

function ynn = isconnectedasym(g)
% isconnectedasym(g) -- determine if g is a connected graph
% Gives the right answer when g is directed
% Works by applying the method of isconnected successively
to every node.

As promised, here is the routine that finds disconnected components, written by ESD
PhD Dr Mo-Han Hsieh. Here are the first few lines:

% [componentCount] is used to generate the component partition
of a matrix.
% Its input is the adjacency matrix, A.
% Its output are partition, componentList, mainNum, and
singletonNum.
% /partition/ maps each node to different components.
% /componentList/ is a list of components and the number of
nodes in the
% components. Its format is: [component ID, number of nodes in
it].
% /mainNum/ is the number of components which has members of at
least two, and
% /singletonNum/ is the number of singletons.

function
[partition,componentList,mainNum,singletonNum]=componentCount(A)

Here is an example disconnected network with 2 components:

1

3 2

4
Figure 7. Example network with two components

Here is how to use componentCount to find out about this network:

AC =
 0 1 1 0
 0 0 0 0
 1 0 0 0
 0 0 0 0
>> [aa,bb,cc,dd]=componentCount(AC)
aa =
 1

 1
 1
 2
bb =
 1 3
 2 1
cc =
 1
dd =
 1
>> maxcompsize=max(bb(:,2))
maxcompsize =
 3
maxcompnum=find(bb(:,2)==maxcompsize)
maxcompnum =
 1
>> maxcompnodes=find(aa==maxcompnum)
maxcompnodes =
 1
 2
 3
maxcompgraph=AC(maxcompnodes, maxcompnodes)
maxcompgraph =
 0 1 1
 0 0 0
 1 0 0

The above code finds aa, the list of nodes, assigning each to a component. (The nodes are
numbered consecutively so the list of node numbers is not printed. All you get is the
component number assignment.) This list says that nodes 1, 2, and 3 belong to
component 1 while node 4 belongs to component 2. It then finds bb, the list containing
the component numbers in the first column and the number of nodes in each component
in column 2. This list says that component 1 has 3 nodes while component 2 has 1 node.
cc and dd are respectively the number of components that have more than one node and
the number of nodes with no neighbors. Following this is code that uses bb and aa to
obtain the size of the largest component, its number, and a list of its nodes. Finally there
is code that extracts the adjacency matrix comprising this component, called
maxcompgraph, from the original adjacency matrix. Neither of these adjacency matrices
is symmetric because the original graph has one directed link.

Appendix 1: Random Networks

Random networks represent the opposite in regularity from grids and lattices discussed
above. Random networks can be analyzed and there is a large literature on them [Erdös
and Rényi]. A random network can be built by selecting pairs of nodes and linking them

with some probability. (The Matlab code for doing this is discussed in the notes called
Basic Network Metrics, where routines for generating various kinds of networks are
discussed.) When one builds a random network this way one gets a degree sequence that
has a Poisson distribution. That is, p(k) = e− z z k /k!. Two example degree distributions
are shown in Figure 8.

Figure 8. Degree Distributions for Two Random Networks, One with and the

he basic statistics of such a network, consider first how many edges the

z = 10 z = 1.006

p0 = e−1 = 0.3679
p1 = e−1 = 0.3679
p2 = e−1 /2 = 0.1839
p3 = e−1 /6 = 0.0613

z =10
Other with z =1.006
To arrive at t
network would have if each of the n nodes were linked: m = n n −1()/2. If we conn
pairs of nodes with probability

ect
p then the number of edg pn n −1()/2.

Then the average nodal degree of a random network will be z
es will be m =

=< k >= 2m /n = pn
(approximately, if n is large. The clustering coefficient c m
two nodes are linked, given that they have a common neighbor. But in a random
network, the probability that two nodes are linked is simply

easures the probability that

p regardless of what
nodes they link to, so c =

other
p. Since p = z /n and we usually work with large networks

with modest values of z , the cluster ficient of random networks is usually very
small.

ing coef

 z ≈ 1If or not too much bigger, then the network is tree-like and with probability
 node approaching one there is a path between any randomly selected pair of nodes. Each

has on average z neighbors, and if the network is tree-like, then each of them has z
neighbors, and so on, so that there are z l nodes at a distance l

n
 from a typical node.

Suppose d is the shortest distance all the way across a network of n total nodes. The
n ~ z d o dr ~ ln(n) / ln(z) , providing a scaling rule for the diame er and average path

t
length of a random network.

Appendix 2: Matlab Syntax

The following is the Matlab code for the rou
 nodelist.

tine adjbuildn, which builds a network from
a

function adjbuildn = adjbuildn(NL)
%builds an adjacency matrix from a directed nodelist
%column 1 is the node number, nodes it links to are in the
row
[rows,colms]=size(NL);
numnodes=rows;
maxk=colms;

B=zeros(numnodes,numnodes);

for i = 1:numnodes
 for j = 2:maxk
 if NL(i,j)~=0
 B(i, NL(i,j))=1;
 end
 end
end
adjbuildn=B;

The first line of cod

ariable that the rou
e tells how to use the routine. The left side of the = is the name of the
tine calculates and passes back to the user. On the right is the name

odelist you want converted to an adjacency matrix, while
 resulting matrix. If there is any discrepancy between the

as.
owing example shows:

v
of the routine followed by a list of input arguments. The routine is called adjbuildn and
is stored as file adjbuildn.m To call the routine, type the following into Matlab

>> testadj=adjbuildn(test)

Test is your name for the n
estadj is your name for thet

name of the routine in the “function” line and the filename under which the routine is
stored, use the filename when you call the routine in Matlab.

If a routine has multiple input or output arguments, their names are separated by comm

ut the list of output arguments is enclosed in […], as the follB

function
[partition,componentList,mainNum,singletonNum]=componentCount(A)

This routine finds the isolated connected components of network A and returns the
nformation in four separate arrays. i

eferences R
[Ahuja, Magnanti, and Orlin] Network Flows: Theory, Algorithms, and Applications,
Englewood Cliffs: Prentice-Hall, 1993

[Erdös and Rényi] Erdös, P. and Rényi, A. On Random Graphs. Publ. Math. 6, 290–297

ST
(1959).
[Miller] L. E. Miller, “Connectivity Properties of Mesh and Ring/Mesh Networks,” NI
Wireless Communications Technology Group, April 2, 2001.
[Newman] “The Structure and Function of Complex Networks,” SIAM Review 45, 167–
256 (2003)
[Wassermann and Faust] Wasserman, S. & Faust, K.,. Social Network Analysis: Methods
and Applications,
Cambridge University Press, 1994

MIT OpenCourseWare
http://ocw.mit.edu

ESD.342 Network Representations of Complex Engineering Systems
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Introduction
	Network Representation Using Matlab
	Data Input
	Simple Matrix Operations
	Logical Operations and Extraction of Submatrices
	Basic Facts About Undirected Graphs
	Network Metrics
	Appendix 1: Random Networks
	Appendix 2: Matlab Syntax
	References

