

Jo

THE I
 ENGINEERING SYSTEMS
MONOGRAPH

Edward Crawley, O
el Moses, Warren See

NFLUENCE OF ARCHITECTURE IN ENGINEERING

The ESD Architecture Committee

livier de Weck, Steven Eppinger, Christopher Magee,
ring, Joel Schindall, David Wallace, Daniel Whitney (Chair)

SYSTEMS

March 29-31, 2004

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

THE INFLUENCE OF ARCHITECTURE IN
ENGINEERING SYSTEMS

The ESD Architecture Committee

Edward Crawley, Olivier de Weck, Steven Eppinger, Christopher Magee, Joel Moses,
Warren Seering, Joel Schindall, David Wallace, Daniel Whitney (Chair)

ABSTRACT
The field of Engineering Systems is distinguished from traditional engineering design in part by
the issues it brings to the top. Engineering Systems focuses on abstractions like architecture and
complexity, and defines system boundaries very broadly. It also seeks to apply these concepts to
the process of creating systems. This paper summarizes the role and influence of architecture in
complex engineering systems. Using the research literature and examples, this paper defines
architecture, argues for its importance as a determinant of system behavior, and reviews its ability
to help us understand and manage the design, operation, and behaviors of complex engineering
systems.

A. INTRODUCTION
Typical engineering design education focuses on specific aspects of design, such as the technical
behavior of a set of elements interconnected in a certain way. By contrast, Engineering Systems
focuses on a number of abstract concepts first because they provide a general framework for
guiding the development of many diverse kinds of systems, so that these systems will provide the
desired functions in the desired ways. Among these abstract concepts is that of system
architecture. In this paper, we explore this concept and provide a number of ways of appreciating
system architecture’s importance in both the practical aspects of system design and in the
intellectual aspects of understanding complex systems from a variety of viewpoints.

The paper begins with a definition of architecture and its influence on functional behavior, extra
desired properties like flexibility and reliability (collectively called “ilities”), complexity, and
emergent behaviors. Architectures are not static but instead evolve over long periods as
technologies mature. They also evolve during the normal course of designing an individual
system. These evolutionary patterns are useful in understanding architecture’s importance.

The paper next provides several examples of architectures and illustrates how architecture
affects the way systems are designed, built, and operated. The examples include aircraft,
automobiles, infrastructures, and living organisms.

The importance of architecture is framed in three domains of importance: as a way to understand
complex systems, to design them, to manage them, and to provide long-term rationality by means
of standards. The abstract concepts of modularity and integrality are shown to be useful for
categorizing systems and illustrating how architectural form can influence important system
characteristics. Several contrasts are noted between relatively small, deliberately designed
products and evolutionary, less-managed large infrastructures.

Architecture’s ability to influence the functions and allied properties of systems is shown to extend
to robustness, adaptability, flexibility, safety, and scalability. Examples from recent research are
given to show how some of these properties might be measured using network models of
particular architectures.

1

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Finally, the paper identifies a number of important near- and long-term research challenges
regarding the potential for understanding architecture to the point where a system’s behaviors
can be completely determined. Among the barriers are complexity, bounded human rationality,
and human agency.

B. WHAT IS SYSTEM ARCHITECTURE?
System architecture is an abstract description of the entities of a system and the relationships
between those entities. Architecture is important in most technical fields, including not only civil
architecture of buildings but of physical products, software, computer networks, large engineering
systems, and infrastructures. The architecture of a system has a strong influence on its behavior.
Every system has an architecture. Architectures may arise in the process of deliberate de novo
design of a system; by evolution from previous designs with strong legacy constraints; by obeying
regulations, standards, and protocols; by accretion of smaller systems with their own
architectures; or by exploration of form and behavioral requirements via dialogue between users
and architects, to name a few known mechanisms. While natural architectures may hold lessons
for us, including the influence of evolution under constraints, we are mainly concerned here with
man-made architectures of complex engineering systems.

Man-made system architectures are created as part of the process of creating and designing
systems. These systems are intended to have certain primary functions, plus other properties that
we call “ilities:” durability, maintainability, flexibility, and so on. The primary functions have
immediate value while the ilities tend to have life-cycle value. Like the ilities, the architectures
themselves are long-lived either because they determine the design of several generations of
products or because the resulting systems are themselves long-lived. In most cases, it is very
challenging to design a complex system that achieves all of its primary functions and all of its
ilities. In some instances one has to resolve tradeoffs between desirable properties for the short
term versus desirable life-cycle properties. An example is the life-cycle property of extensibility,
which might require including interfaces for future system elements that are not present in the
original version. Such interfaces must be designed, will generally require additional resources,
and might increase initial system complexity. The benefits of such architectural decisions are
uncertain and might only be realized in the future, or not at all. Methods for evaluating uncertain
events and providing for them in advance are discussed in De Neufville (2004).

Some systems, such as familiar products of industry (cars, aircraft, computers) are designed
according to a deliberate process that includes carefully thinking through what their architectures
should be, although the thinking and the resulting architectures can vary widely in
appropriateness for their intended purposes. Other systems, such as large infrastructures, may
grow by accretion or annexation from smaller systems. Even when the smaller systems have
deliberate and well-conceived architectures, the resulting agglomerated system may not have a
cohesive or consistent architecture, a fact that may inhibit the system’s ability to function.
Regional electric power grids are an example.

Complex systems have behaviors and properties that no subset of their elements have. Some of
these are deliberately sought as the product of methodical design activity. While achieving these
behaviors, the designers often accept certain undesirable behaviors or side effects, In addition,
systems have unanticipated behaviors commonly called emergent. Emergent behaviors may turn
out to be desirable in retrospect, or they may be undesirable. Emergent behaviors are similar to
incidental interactions identified in Ulrich and Eppinger (2000). Automobiles not only enabled
personal transport but revolutionized society in many unexpected ways, such as growth of
suburbs and shopping malls, courtship habits, and a sense of personal freedom. Other examples
of this are in Table 1.

2

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

 Anticipated Emergent
Desirable Electric power networks share

the load.
Hub-spokes airline routes
shorten the length of trips.

Blackouts are associated with
increased births.
Hub-spokes plus waiting time
creates a business opportunity
in airport malls.

Undesirable Power networks can
propagate blackouts.
Hub-spokes causes huge
swings in workload and
resource utilization at airports.

Blackouts are associated with
increased births.
Airport operators become
dependent on mall rental
income, making it difficult to
modify airline route structures.

Table 1: Examples of Desirable and Undesirable Anticipated and Emergent System
Properties Influenced by Architecture

The desirability/undesirability as well as the anticipated/emergent nature of these examples are
debatable and are offered for discussion purposes only. (Hub-spokes example from Allen,

Nightingale, and Murman 2004.)

Finally, the architecture of a system is an important determinant of its complexity, for good or ill.
Sometimes, architectures are designed or evolve to minimize complexity, but, as systems grow in
size, a point is usually reached where a system’s complexity becomes overwhelming, imposing a
limit on what one can do to operate the system, predict its behavior, or change it. Many systems
gain both their benefits and their vulnerabilities from what would appear to be complexity, such as
the interconnections in the nation’s electrical grid. These interconnections permit power to flow
from regions with excess to those with shortages, a common occurrence. If each region had its
own grid, there would be no way to share the load. But exactly the same complexity works in the
opposite direction as well. When the shortage in one region is too great and that region’s grid
breaks down, this breakdown can propagate along the same connections and bring down other
parts of the grid that have no problems. Empirical evidence for the influence of complexity is
given by Sterman (2000), who describes instances of “policy resistance:” systems whose
behavior gets worse as people doggedly apply what they think is the correct policy.

The above points are summarized in Figure 1.

Architecture

Function
Behavior

Complexity

Emergent
Behavior

"ilities"

Figure 1: Architecture Plays a Central Role in Giving a System Its Behavior and “Ilities,” as

Well as Generating Emergent Behavior and Complexity

3

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

System engineering theory teaches designers to create a hierarchy of functions and physical
objects. In most cases, these are system behaviors or characteristics, such as safety, handling,
or fuel economy, that are visible to the customer. During system design, the requirements of
upper levels in the hierarchy are decomposed and flowed down to the lower levels. This is
intended to create separate manageable pieces that can be worked on independently. Carried to
its extreme, this process is called “reductionism.” Major challenges include remembering all the
requirements, keeping them consistent, and understanding the many interactions between
branches of the hierarchy. These interactions cause problems during integration at the end of
product development and challenge the basic assumptions underlying reductionism.

System engineering theory works most smoothly when the product can be broken into modules
that are relatively independent. Such products or systems are called modular. When products
cannot be decomposed simply, or when their behaviors interact, they are called integral. There
are good technical reasons, such as weight or energy efficiency, that some systems must contain
some measure of integrality. Correspondingly, there are good non-technical reasons, such as the
ability to upgrade or customize a product, that systems must also contain some measure of
modularity. A continuing tension in system design is the result.

More generally, reductionism relies on the assumption that a divide-and-conquer strategy will
really work, that understanding the behavior of each element and defining each interface correctly
and completely will assure a properly working system. This assumption brings with it a host of
other attitudes and methods, generally called top-down, that assume that things can be
preplanned and scripted, and that following the script is the way to get a successful result.

In contrast to top-down is bottom-up, in which requirements and system design are expected to
emerge over time and by means of trial and error. Under these assumptions, no complete script
can be written, not all of the events and decisions can be anticipated or scheduled, and the final
result is unknown. On this basis, a step-by-step design process beginning with definition of the
architecture is impossible. At the very least, the early steps will be revisited. Even if the design of
each individual system proceeds more or less top-down, the architecture of an industry or class of
system has historically evolved on a bottom-up basis. This is especially true in complex
situations. A nuanced procedure for balancing these approaches is given by Cutcher-
Gershenfeld, Field, Hall, Kirchain, Marks, Oye, and Sussman (2004).

Creating an architecture is often called architecting. Rechtin’s description of this process broadly
represents the de novo design situation plus intense dialogue between architect and customer
(Rechtin 1990). It involves determining what the system is supposed to do and how specifically it
will do it. Rechtin’s view of architecting is similar to the embodiment stage (Pahl and Beitz 1991)
in classical engineering design, when functions are expressed as objects arranged in space so
that they can accomplish the desired functions. Achievement of the ilities is also a factor during
the embodiment stage, according to Rechtin and Pahl and Beitz. The process of generating form
from function usually does not deliver a unique form. The final choice is guided by application of
the principles of engineering design as well as by the desire to conform to the ilities. Furthermore,
in traditional engineering design, the ilities are derived from careful consideration of customers or
users of the system. In the enterprise view of complex engineering systems (Allen, Nightingale
and Murman 2004), Ilities also arise from enterprise culture and values, such as the safety-
consciousness of Volvo.

The process of creating an architecture often follows a process of decomposition, in which a top-
level concept of the system’s required functions is broken down into subfunctions, and at the
same time the most abstract version of its physical form is broken down into subsystems capable
of performing the subfunctions. The process of decomposition continues in this way until single
parts are reached. Decomposition at lower levels often can be accomplished only by choosing
particular concepts or instantiations of the system. System design does not always follow a
relentless top-down decomposition process to the single-part level but may stop partway when
standard or previously used items are adopted in full. It is also frequently true that architects and

4

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

designers iterate between upper and lower levels of the system decomposition as the designers
learn more about the implications of their architectural decisions.

Within the architecting process, several types of architectures are involved (Levis 1999). These
are

> The functional architecture (a partially ordered list of activities or functions that are
needed to accomplish the system’s requirements)

> The physical architecture (at minimum a node-arc representation of physical
resources and their interconnections)

> The technical architecture (an elaboration of the physical architecture that
comprises a minimal set of rules governing the arrangement, interconnections, and
interdependence of the elements, such that the system will achieve the
requirements)

> The dynamic operational architecture (a description of how the elements operate
and interact over time while achieving the goals)

Furthermore, architectures may evolve over time. This is true of typical products like cars and
aircraft and is particularly important with respect to long-lived systems like infrastructures. An
infrastructure’s evolution is governed by many factors, such as its geographic dispersal and its
high societal impact. A system like the telephone network or the organization chart of a company
begins simply, with a few elements and simple relationships. As it grows, elements are added,
new complexities arise, and the system may have to be re-architected. Wise is the architect
whose system can grow within the original rules, element types, and structural arrangements.
Most companies must be repeatedly reorganized. Other systems that involve large investments in
physical plant cannot be re-architected. The goal of the architect is to minimize the severe
constraints imposed by legacy, some of which are highly disadvantageous.

The life history of a decomposition process, both for familiar products and long-lived
infrastructures, comprises at least two evolutions. One evolution defines the architecture of an
entire technological class of entities and follows the “S” curve (Utterback 1994). The other
evolution follows a contingent series of choices during the design of a given entity in that class.

The “S” curve history starts with an interactive search by users and designers for requirements
and matching architecture. A pure top-down process cannot succeed in the early phases of a
technology or industry. Even after users and designers understand each other, systems evolve to
meet requirements in new ways. In aircraft propulsion, the top-level architectural decision
between piston (radial geometry) and turbine (axial geometry) mechanizations was made
decades ago. We do not often go down the piston side of the choice tree any more. Within the
turbine choice tree, many decisions are no longer looked at seriously because technology,
materials, or safety considerations have cemented those decisions into place. Thus, as
technologies mature, the active choices are pushed lower and lower, ultimately to the component
level. Sometimes hybrid architectures, such as turboprops, will emerge to exploit new markets or
to backfill market segments abandoned by earlier architecture/technology concepts. This reflects
the Henderson-Clark (1990) breakdown of innovation (radical, architectural, component, and
incremental). When a major/disruptive break occurs, it is necessary to undo choices at
increasingly higher levels of the decomposition tree.

In an individual system design project, a decomposition is made in the form of a series of choices,
any one of which represents a form-function realization, and any one of which could run into a
serious problem. If the problem threatens the whole design, a series of decisions above must be
revisited. This can be especially difficult if the budget or schedule available to these decisions has
been exhausted. The inability to operate confidently at lower levels of this tree, free of the fear of
the whole thing unraveling, constitutes one of the hazards of designing complex systems.

5

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

C. EXAMPLES OF ARCHITECTURES
Architecture comprises entities and the structure of relationships and interfaces between them.
The relationships can be geometric, temporal, logical/informational, or based on exchange of
matter, information, energy, or value. Architectures can describe end items like cars or highways,
or they can describe patterns and rules by which such end items should be designed or built.
Architectures must also contain a plan for how the system should be operated under nominal and
off-nominal conditions.

Thus, aircraft architectures can be classified as fixed wing or rotary wing. Within fixed wing, we
have straight or angled wings distinct from the fuselage, delta wings, and blended wing
architectures. We also used to have mono-wing, bi-wing and tri-wing configurations, but the latter
choices were gradually abandoned. Each of these is suited to a different class of operation,
speed, flight pattern, payload, or flying characteristics. The architect chooses wing and body
shapes in order to achieve the desired functions.

The architecture of wheeled vehicles began as “body on axles,” the typical form of chariots and
farm wagons. Sometime in the past, springs were added and the architecture became “body on
frame separated by springs.” This architecture persisted into the era of automobiles until the mid-
1960s when the technology of steel stampings made reinforced shell bodies feasible, giving rise
to the unitized body in which there is no separate frame. Sloan (1996) describes several
intermediate forms that appeared and disappeared in the 1920s and ’30s, such as radiator and
rear seat over axles, and low-slung frame.

Jet engines have two dominant forms today, the low-bypass and high-bypass types. See Figure
2. The high-bypass type gains its thrust from a jet-driven propeller called the fan, and has a large
frontal area and diameter. It is suitable for commercial planes when situated under the wings. The
low-bypass type is more like a rocket that gains thrust by emitting hot gas out the back. It is long
and thin and is suitable for mounting inside the fuselage of a combat jet. The cockpit of such a
plane is mounted ahead of the engine. A high-bypass engine could not be mounted in this way on
a fighter jet. It is also more difficult to rapidly change the RPM and thus the thrust of a high-
bypass engine as is required by combat maneuvers. For a history of these engines, see Smith
and Mindell (2000).

Compressor Combust or Turbine

Cockpit Wing

Fan

Compressor

Combust or

Turbine

Wing

High Bypass Type Jet Engine

Low Bypass Type Jet Engine
Figure 2: Schematic Comparison of Architectures of Two Types of Jet Engines

6

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Aircraft architectures are also described by product families such as the Boeing 737-xxx series.
Members of such a family share a common fuselage diameter and certain other characteristics
such as control systems and cockpits, but may differ in fuselage or wing length. New members of
the family must conform to certain rules of design and production, so that they can be made in the
same factory and flown by the same pilots without undue retraining. These rules also comprise a
kind of architecture—that of the product family itself. They comprise standards that govern some
features of the entities (fuselage elements) as well as the interfaces (main fuselage joints) that tie
them together.

Aircraft manufacturing also presents architectural choices. Figure 3 shows two methods for
assembling aircraft fuselage and installing distributive and interior systems. Each has its
advantages and disadvantages. “Trough and drape” is more feasible for small aircraft than for
large, for which “build and join barrel sections” is commonly used.

Aircraft Manufacturing
Architecture

Trough and Drape Build and Join
Barrel Sections

Favors achieving
circular geometry Favors pre-outfitting

of individual sections

Favors installation
of long

distributive systems

Favors completion
of large amounts
of work prior to
final assembly

Permits adding
family members
by creating new

barrels

Permits top-loading
of many interior

pieces

Figure 3: Alternatives for Building Aircraft Cylindrical Fuselage Sections

Another example of an architecture that governs the creation of multiple systems is the wired
national telephone network. This system has three layers, each with its own architecture. At the
local level, there is a central exchange that can link any of 9,999 phones to each other or can link
one of them to a phone in a nearby exchange in the same region. Inter-regional trunks link the
regions in the layer above the local layer. At the top is a layer of long distance links that can be
switched based on current loads to create alternate routes for long distance calls between distant
regions. Each layer has multiple connections within it and a few connections to the other layers.

7

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Within the top two layers, it is possible to create many alternate paths for calls to follow. Thus, the
system can be scaled to carry more calls and is robust against disruptions to major links and
hubs.

Figure 4 is a map of the California electric transmission grid, showing the main high voltage lines.
It is an accretion of the investments of at least nine separate entities. Connections, not shown, to
other states obviously add links and loops to what is shown.

Figure 4: California Electric Transmission Grid

At least nine distinct grids are shown. Line layouts and generator locations are influenced
by geography, population centers, location of water, and regulations,

to name a few (von Meier 2003).

The fact that architectures can arise in different ways presents some challenges to academics
wishing to understand architecture. The de novo case is the least constrained and thus allows
analysis of a sort of “pure” situation similar to removing friction in order to understand the basics
of dynamics. Understanding the pure case allows us to define an ideal process and perhaps
some ideal architectures, as well as to generate benchmarks that can be used for comparison to
real architectures that conform to the constraints mentioned above. Yet few if any architectures
are actually created in the pure environment. Thus, the next intellectual challenges are to
understand the interactions of form, functions, and constraints that practicing architects must deal
with, and to understand how to balance these factors to create a “good” architecture.

8

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Summing up, we may observe that a wide variety of systems have architectures and that
architecture is what gives systems their behaviors, both good and bad. The process of creating
architectures is central to creating working systems that fill defined needs in defined ways within
certain constraints.

There are, however, no algorithmic procedures for creating architectures, that is, for choosing
elements or choosing how to link them together, so that the desired behaviors will definitely be
achieved. Furthermore, there are no tools that permit us to reason out what unintended behaviors
will emerge just by inspecting the arrangement or understanding the behaviors of the individual
elements. Thus, architecture is a necessary but incompletely understood property of complex
engineering systems, and architecting is a necessary but incompletely understood step in
creating them. This does not mean that more rigorous ways of analyzing and synthesizing
architectures are beyond our collective reach. One of the goals of research in system architecture
is precisely this—to uncover a set of principles, methods, and tools that will help system
architects in the future.

D. WHY IS SYSTEM ARCHITECTURE IMPORTANT?
Architecture is important practically and intellectually. It is necessary in order to design systems
well and to understand their behavior. Some architectures are easier to manage during design,
others easier to manage during operation. Some are more robust to deliberate attack while others
are more robust to random failures. Some of these aspects of architecture are discussed next.

1. ARCHITECTURE IS A WAY TO UNDERSTAND COMPLEX SYSTEMS
Architecture as “arrangement of entities and relationships between them” conveys many of the
ways the system will behave. In a highway system, one can count the number of alternate routes
and the capacity of each, and thus can predict the system’s overall capacity. The structure of an
airline’s service network can be set up as hubs and spokes, permitting the airline to fly
passengers between far-separated cities via short routes and few plane changes.

Architecture as “rules to follow when creating a system” conveys coordination rules, so that
different people at different times and places can create systems that are compatible in various
ways. This is efficient not only because of the advantages of coordination but also because
elements and interconnection patterns with known behavior can be reused, increasing the speed
with which such systems can be designed and put into operation.

Some architectural designs can follow canonical patterns whose behavior is fairly well
understood. Hub and spokes mentioned above is one example and is one case of a network.
Token rings and buses are other forms of architectures, particularly popular in computer
networks. A tree structure is another standard architectural form. Here each element is linked to
each other element by one route only. Formal organizations are usually trees, but informally they
behave like more general networks in which people find alternate routes by which to
communicate with each other.

Not only are a system’s desired operating modes influenced by its architecture, but so are some
of its failure modes. Thus an architecture that permits only one path between elements may fail if
a leg of any path breaks. All of a tree below a broken node is isolated from the rest of the tree.

Some architectures can be represented fairly completely as networks. In such cases, a lot can be
determined about their behavior from graph theory. Current literature usually assumes identical
nodes and identical links. Various authors (Doyle and Carlson 2000; Barabasi and Albert 1999;
Watts and Strogatz 1998; Strogatz 2001) have studied the properties of such graphs in order to
determine their behavior if certain nodes are removed, or if control of the network’s routes is

9

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

decentralized. A general network is vulnerable to random failures while a hub and spokes
network is not, since hubs can easily carry traffic routed to them around broken nodes. But a
deliberate attack on one or more hubs will disable this kind of network fairly quickly whereas a
general network does not present opportunities for efficient deliberate attack. The time taken by a
message to go between random nodes and the vulnerability of a forest to lightning strikes are
other examples of analyses that can be performed on such general models.

2. ARCHITECTURE IS A WAY TO DESIGN COMPLEX SYSTEMS
Designers can use architecture to help create systems with desired behaviors and can structure
those architectures to make the task of design and manufacture easier, although these goals
sometimes can be in conflict. Architecture as “rules to follow when creating a system” has already
been discussed. In addition, architects speak of integral and modular architectures as differing
styles with their own advantages and disadvantages.

Roughly speaking, modular architectures consist of modules, each with one or a few distinct
functions, connected to each other with a few simple, well-defined interfaces. In the ideal limiting
case, all interactions between modules occur over these predefined interfaces, and all system
behavior is encompassed by module behavior and interactions across the defined interfaces. On
the other hand, integral architectures contain modules that perform multiple functions and interact
over many interfaces, some defined by the architect and some emergent as a result of module
behavior or opportunistic interactions. In some limiting cases, there are no discernable modules.
Most real systems are in between the limiting cases.

Modular architectures are the easiest to decompose, sometimes according to the functions
performed, sometimes according to how they are designed and built, sometimes according to
how they are used or perceived by users (Ulrich and Eppinger 2000; Baldwin and Clark 2000). In
the ideal limiting case, the system can be built simply by plugging the modules together. The
literature on drivers of modularity and decomposition is large. The notion of “elegant” architecture
applies when the system architecture is very similar across multiple decomposition criteria. This is
the case, for example, when the system modules are identical for design, manufacturing,
procurement, and operational considerations. An example of an elegant architecture is the Apollo
Program. Here, the command module, service module, lunar excursion module, as well as the
Saturn rocket represented modules of a larger architecture, with many interconnections within the
modules and few between them.

Conventional aircraft comprising separate wings and fuselages accomplish the functions of
providing lift, carrying fuel, and housing passengers using separate portions of the aircraft.
Typically wings and fuselages are designed by different engineers and made in different factories.
The Airbus Consortium was structured to take advantage of this architecture. Wings are made in
the UK, fuselage barrel sections in Germany, tail sections in Spain, and final assembly and
integration take place in France. But there are some disadvantages in terms of coordination as
well as transportation of large subassemblies. For example, the International Space Station may
have suffered from certain mismatches between physical and organizational architectures.

On the other hand, blended-wing and delta-wing aircraft combine many functions in the same
structural regions. Such systems are integral. Their design and construction can be more difficult,
but their operational efficiency can be superior to that of more modular systems. They may
contain fewer interfaces or may require only one element to carry out several functions, whereas
modular architectures tend to have distinct elements assigned to each function. The extra
interfaces between modules add weight and occupy space that can be used to accomplish other
goals in an integral system. Extra manufacturing and assembly time may also be required of
modular systems.

10

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

The option to modularize is often limited by the absolute level of power used or conveyed by
system elements. Portions of jet engines may have to be made integral simply in order to manage
the power; however, elements of microelectronic products can be modularized almost at will
because their very low power transmission is incidental to the main function of processing
information. As modularity is enforced, some of this power can be wasted—something that
cannot be done in jet engines (Whitney 1996).

Also, for many systems, such as vehicles (cars, airplanes, spacecraft, submarines), there exist
important packaging constraints that force all subsystems and modules to fit within a constrained
volume in physical space. Vehicles have to carry much of the energy for their own travel within
that constrained volume. One may argue that the existence of such constraints pushes architects
and designers to make choices that promote volume and mass efficiency at the expense of purely
decoupled, uncoupled, or elegant architectures. Fixed infrastructures and various kinds of non-
mobile industrial machines might not have to satisfy such constraints, and, as a result, their
architectures might be different. The independence axiom of axiomatic design promotes
decoupling functional and physical elements of the architecture (Suh 2001). The virtues of such
practices stem mainly from reduced complexity of design, manufacture, and system integration.
When performance, efficiency, and packaging constraints dominate, such clean, decoupled
architectures might not always be feasible.

Modular architectures can also be designed and built as distinct subassemblies, and some of this
work can be distributed among many companies in a supply chain. The coordination of such work
is aided by careful definition and oversight of the interfaces and relationships between these
subassemblies, along with maintenance of standards for measurement. In many cases it is
desirable to make the functional boundaries the same as the physical boundaries, an additional
constraint on the architecture that permits subassemblies to be functionally tested prior to final
assembly.

Commercial products are often given modular architectures that permit them to be customized on
the spot in response to customer orders. Assembly sequences and supply chain dynamics are
arranged, so that most of the product can be built in common and customization can be delayed
to an economically or logistically advantageous point (called the decoupling point or the push-pull
boundary) (Simchi-Levi et al. 2002).

Baldwin and Clark (2000) have studied modularity and conclude that there are three kinds.

> Modularity in design (each function is designed separately and placed in one
physical object, or several functions and their objects are combined and designed
together)

> Modularity in production (a group of functions or physical objects is built or bought
as a package)

> Modularity in use (the customer can combine several functions or physical objects
and use them, choose them when buying, or upgrade them together)

The important thing to understand is that the three different kinds of modules may be different. As
illustrated in Figure 5, a module that exists in production may include parts of many modules that
exist in design, This can cause confusion, cut systems in two, and create disconnected pieces of
requirements that must be satisfied by different suppliers who may not have the skills. The
example in the figure was provided by Francois Fourcade, who was product line manager for a
front-end module for a French car supplier. Its customer cancelled the program, and the supplier,
seeing no way to make a profit in view of the technical and business complexities, has not bid on
this kind of item since.

11

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Figure 5: A “Module in Production” Consisting of Front Bumper, Bolster, Grill, and Lights
Contains portions of several systems but not all of any one. It is easy to install on the car but hard

to design and test.

As shown in Figure 6, some kinds of products are easier to modularize than others. More integral
products need to be designed at the highest level of the hierarchy, or their design requires a lot of
coordination of the “modules” at lower levels.

Mono-
coque

BFI
(unibody)

BOFSF
(spaceframe)

===

INCREASING
INTEGRALITY

LOW TECH
VLSI

14 WHEEL
TRUCK
TRACTOR

BODY ON
FRAME CAR

UNIBODY
CAR

FORMULA 1
RACING CAR

JET ENGINE

Figure 6: Examples of Products with Different Degrees of Integrality
Top: Dominant architectures of automobiles. (Illustration provided by Prof. Olivier de Weck, MIT

ESD) Bottom: As integrality increases, it is harder to divide the product into independent modules.
(Illustration provided by Prof Jasper Steyn, University of Pretoria.)

According to the theory of axiomatic design, the best design is one where each function is
implemented in a way that is independent of implementation of any other function (Suh 2000).
This permits the maximum in independence and simplicity. It is impossible to define all of these
relationships at once, however. Instead, one has to start with the top-level functions and define
some top-level technological choices or implementations. These give rise to a second layer of

12

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

functional requirements, which in turn are linked to more detailed or subordinate technical
implementations. This decomposition process continues in a zig-zag fashion to the lowest level in
the hierarchy. While there is general agreement that simpler designs with independent functions
are desirable, there is less agreement about whether this is possible in complex systems.

The processes for designing complex systems can also be said to have architectures, as can the
organizations that carry out the design. Processes can have modules and interconnections
between them, and these can all evolve over time. Steward (1995); Allen, Nightingale, and
Murman (2004); and Browning et al. (2002) discuss alternate organizational patterns and show
the influence of conforming or not conforming organizational structures to product and system
architectures.

There is some evidence that complex phenomena become understandable only after their
essential modules have been identified and characterized. A corollary requirement for
understanding is that these modules act the same way in all combinations and that the types of
interactions and interfaces can be enumerated and characterized.

3. ARCHITECTURE IS A WAY TO DESIGN STANDARDS AND
PROTOCOLS TO GUIDE THE EVOLUTION OF LONG-LIVED SYSTEMS

Standards provide a way for systems to be designed by different and distant sets of designers
using the patterns set by the standards. An early example is standard weights and measures,
which permit decomposing and outsourcing system design to a supply chain. Later examples
include pipe threads, electrical quantities, communication codes and protocols, and software file
interchange standards. Standards often apply to interfaces, a prime focus of system architecture.
Once in place, these standards provide the ability to evolve systems over time, design upgrades
to existing systems, and to innovate a class of systems under the umbrella of the standard. The
standard allows the system designers to skip an often difficult step in design and focus their
efforts on the immediate challenges. Standards also permit systems to be made of a judicious
combination of standard components and bespoke ones.

An example of a long-lived standard that gave rise to a whole set of avionics architectures in
aircraft, spacecraft, and military communications systems is MIL-STD-1553.

MIL-STDs comprise, among other things, standard procedures for doing repetitive things. Even
the design of products and systems can be subjected to standards, such as the German DIN
system. The DIN for product development was based on Pahl and Beitz (1991).

In some domains, such as VLSI, standard components have been adopted as one way to reduce
uncertainty in complex semiconductor product development. These components, either stand-
alone chips or nano-scale circuit devices within a chip, act as the main function carriers of such
systems. In typical high-power mechanical systems, the standard components are more often
support items like fasteners. The most important main function carriers are usually designed to
suit. Whitney (1996) discusses the reasons for this.

4. ARCHITECTURE IS A WAY TO MANAGE COMPLEX SYSTEMS
System architects often seek to design the systems so that they will be easily managed after they
are built. System modules or segments may be defined by where they are or how easily they can
be observed or controlled rather than by what they do. What they do may be perceived quite
differently by operators than by designers. Thus, elements that might be designed or
manufactured more efficiently as a single integrated unit might be nevertheless divided into two or
more distinct units in order to make operation or repair easier.

13

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Complex products and systems are hard to design and operate because a) they contain complex
components, and b) those components interact in complex and sometimes unpredictable ways. It
takes a long time for someone to learn all the interactions that are known, much less learn how to
find the hidden ones. Data from several lines of research indicate that individual attributes are
supported by six to twelve underlying and interacting items, and sometimes more (Whitney et al.
1999). The interactions comprise long chains that can snake through assemblies, tooling,
organizations, and supply chains. Only the most senior employees, given the chance, are likely to
understand the whole chain in any given situation. Management incentives and career-path
planning are needed to ensure that a critical mass, perhaps 10 percent of all technical
employees, have a chance to develop this kind of knowledge and put it into use.

A user or operator of a system may see it in a way that is totally different from the way its
designers or builders see it. Its “modules” may be operating or failure modes, rather than physical
elements. Such modes may combine elements that were not necessarily designed or built
together.

The impact of complexity in an architecture may be felt most strongly by users or operators. If the
interconnections or interactions are many, hidden, or changing, the operators may be unable to
understand the system and operate it properly. Users may drive the system into unstable
operating regimes, as happened at Chernobyl, or they may do the wrong thing because they do
not know the state of the system, as happened at Three Mile Island. Thus, one must distinguish
between interface complexity and behavioral or structural complexity. Interface complexity is a
subjective measure of complexity as experienced by users, operators, or assemblers of the
system. This subjective perception of complexity is often expressed by the adjective
“complicated” rather than the adjective “complex.” Structural and behavioral system complexity
are theoretically measurable, independently of the observer, provided one can agree on the
metrics. It is good systems architecting practice to think about the relationship between interface
and structural/behavioral complexity in the context of the needs of downstream stakeholders.

It is important to note that the designers of such systems may be unaware that they are creating
complexity. The system may grow by individually understandable increments that lead to an
incomprehensible system in due time. Careful planning can prevent this, but such planning must
be centralized and managed consistently over the entire life of the system. This can happen
under monopoly conditions as existed in the US telephone system for decades. The US electric
power grid was not built by a central planning agency or a monopoly.

E. TYPES OF ARCHITECTURES
This section expands on some of the issues raised in earlier sections. Here we deal with
structures or architectures for architectures and try to make some general observations.

The following figures propose a structure for architectures. Figure 7 displays the first-level
decomposition of things with architectures. Each subsequent figure expands a portion of Figure 7
to lower levels of hierarchy. In many engineering systems, several of these types of entities will
be involved. Thus, not only are their individual architectures important, but so is matching, or the
consequences of mismatching, the architectures of the entities that interact.

14

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Things With Architectures

Entities
Other Architectures That
Inform Or Constrain The
Architectures Of Entities

Natural Systems Designed
By People

Standards &
Protocols

Product Families
And Platforms

Figure 7: First-Level Decomposition of Architectures

In Figure 7 we make a few main distinctions. First, entities are distinguished from architectures
themselves, since both can have architectures. Not every possible architecture on the right is
listed, but a couple of importance (standards and protocols, and product families and platforms)
are noted because they provide constraints on the architecture of things on the left designed by
people that are intellectually or commercially important. Natural systems are included because
their architectures are the subject of high interest (carbon cycle, for example) or because they
may offer exemplars for the design of things that might as a consequence have certain desirable
properties.

Figure 8 pursues the branch in Figure 7 that deals with entities designed by people. On the left
are distinguished two kinds of entities whose internal constraints make their possible
architectures quite different. These differences extend to the ways they are designed and how
they behave. On the right (with abstractness increasing to the right) are things with architectures
that have no necessary physical existence. The lack of physical existence frees them of many
constraints that inhibit architectural choice or implementation in physical things. For example,
thinking in network terms, nothing limits the number of arcs that can emanate from a node in a
non-physical system, but heat, weight, or mechanical constraint are examples of influences that
limit this number in physical things. (Bounded human rationality, however, may provide a limit in
non-physical things.)

Designed by People

Physical Non-Physical

Energetic Hardware
Information
Processors

Software Organizations Intellectual
Frameworks

Typical
Products

Infrastructures

Figure 8: Several Important Things Designed by People

15

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Figure 9 displays an expansion of one important node from Figure 8, namely that of
organizations. A few important kinds are shown. Government and non-governmental
organizations are shown mainly because they provide contexts such as regulations that constrain
architectures of other designed things, both physical and non-physical. Companies and
enterprises are important in themselves because they can have many possible architectural
forms and because those forms interact with and encourage or inhibit the design of other entities,
such as products. At the lowest level in this figure there is increasing abstractness, diversity, and
lack of structure proceeding from left to right.

Organizations

Government Regulators
Government Operators

NGOs

Companies Enterprises Larger
Than Single Govt

Agencies Or Companies

Individual
Programs

Coordinated
Multiple Programs

Joint
Ventures

Supply
Chains

Multiple
Divisions

Figure 9: Two Levels of Decomposition of Organizations as Examples of Non-physical
Things with Architectures That Are Designed by People

The last section of Figure 7, intellectual frameworks, appears in Figure 10. Pursuit of this domain
is as old as philosophy, but it is included here because our committee has engaged in it, and
those who design organizations and their knowledge have done so as well. Again, these
architectures can encourage or inhibit the creation of important entities listed elsewhere in the
figures. Also, there is again a somewhat increasing level of abstractness proceeding from left to
right.

Intellectual
Frameworks

Knowledge
Representations

Data
Structures

Organizational Forms:
Matrix

Function
Program

Canonical
Architectures

Figure 10: A Decomposition of Intellectual Frameworks

For example, it is known that organizational forms differ widely and are variously suited or
unsuited for managing situations in Figure 9, such as individual programs or coordinated multiple
ongoing programs (overlapped car development activities, for example).

16

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

F. DOMAINS WHERE ARCHITECTURE IS IMPORTANT
Architecture is important to both naturally occurring and overtly designed systems since
architecture conveys behavior.

Examples of naturally occurring systems whose architectures have been studied are biological
systems (ecosystems, cells and small organisms—see Figure 11, the carbon cycle, and the
etiology of diseases) and social systems (villages, military units, workplaces). Among the models
built are networks, dynamic simulations, and control systems. Network theory and graph theory
have been used to measure the networks, discover connections and cliques, and determine how
information, energy, and material flow between elements (Kitano 2002; Sterman 2000). Naturally
occurring systems are of interest in their own right as well as because they may tell us something
about how to provide overtly designed systems with desirable properties such as robustness to
element failure.

Figure 11: The Topologic Overlap Matrix Corresponding to E. coli Metabolism, with the

Corresponding Hierarchical Tree That Quantifies the Relation between the Different
Modules (Ravasz et al. 2002)

Some physical systems have emerged without design but perform complex functions and have
distinct architectures. These include informal social networks that spring up within defined
organizational structures. Another well-known example is the Internet, which has no central
control or growth rules. It is relatively efficient and effective but is hard to manage when uniformity
is needed, such as for diffusing security precautions.

Some infrastructure systems conform to natural constraints, such as railroads and highways that
follow terrain, river valleys, or mountain passes. In some cases the routes are thousands of years
old and have been repeatedly reconstructed using new technology. In some cases, new
technologies allow designers to push back on some constraints (tunnels through the Alps,
Chunnel, bridge connecting Denmark and Sweden), albeit at significant cost.

17

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Finally, there are overtly designed physical systems, such as cars, planes, airports, factories,
shopping malls, and supply chains. Each of these seeks to perform certain functions and must
conform to a variety of physical and administrative constraints during construction and use,
including the laws of nature, building codes, industrial standards, safety regulations, and work
rules, to name few. Some such systems, like the DC-3 aircraft, fulfill their intended role and do so
unchallenged throughout a long life cycle. Others, like the B-52, outlive their original function and
repeatedly take on new ones not conceived of when they were designed. Yet others, like the B-
58, barely serve their original function and go out of service quickly, unable to be used for
anything else. The deeper architectural reasons for these different outcomes are not well
understood. The word “flexible” is used to describe such systems, but a universal formula for
creating flexible systems does not exist.

In some cases, flexibility comes at a price—namely, efficiency in some form. Flexibility may
require over-design, generic components, extra interfaces, or changeover time. A less flexible
system might have more focused components, fewer interfaces, and no loss due to changeover.
The need for flexibility shows that the process of architecting requires a model of future usage of
the system, including an understanding of uncertainties in the environment, competition,
regulations, and future user needs. This is a central issue addressed by a parallel ESD committee
on uncertainty management.

The architectures of most overtly designed systems usually emerge from long iterations between
potential users and the system architects and engineers. The DC-3 followed the rejected DC-1
and DC-2 as the engineers sought to meet the specifications and the users saw what was
possible economically and physically. The B-52 might be seen as a successful iteration following
the less successful B-48 and B-50. The structure of General Motors’ products in the 1920s
emerged as the company discovered how to implement the strategy of “a car for every purse and
purpose” while at the same time maintaining some rationality of families and reuse of expensive
components like engines (Sloan 1996).

Similarly, different architectures of production systems have emerged successively over time in
response to different needs. The principle of division of labor permitted specialization and
economy of scale. The assembly line brought the work to the worker to cut wasted motion and
worked best when identical products were made over and over using the same route and
sequence of work. Flexible manufacturing systems sought to combine efficient use of individual
workstations with flexible transport systems, permitting different routes for different products in
the same factory. Common car body architectures are intended to permit different kinds of cars to
be made on the same single route-single sequence assembly line. Each of these architectures
meets, in different ways, different needs for efficiency and flexibility, two of many ilities.

As with the aircraft cited above, each of these architectures emerged and was not successfully
designed on the first try. Each has its own strengths and vulnerabilities as well as emergent
behaviors. Assembly lines led to boredom and, combined with hierarchical management, to
industrial strife, while flexible manufacturing systems presented difficult scheduling problems.
Both were unanticipated, and both have been mitigated by additional architectural and
managerial initiatives.

Another reason why architectures of designed systems emerge is immaturity of technology and
product alike. Utterback (1994) and others (for example, see Christensen 1997) have noted the
cycles of industrial evolution in domains like typewriters and disk drives. When a technology is
new, no one knows what it is or what it can do. There is an exploratory phase when many
innovators and users try different things. At some point, for various reasons, a so-called dominant
design emerges. This design is usually an architecture. An example is the 1920s single metal
wing aircraft with stressed metal skin, which was adopted after twenty-plus years of exploration
with multiple wings, cloth wings, wings with struts and guy wires, and so on. Only now is this
architecture being questioned by both Airbus and Boeing. Once the dominant design emerges,

18

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

innovation switches from product architecture to process architecture, including production,
supply, and distribution systems.

Thus requirements themselves are apparently emergent properties of systems, making their
design necessarily an exploratory process, at least when the system’s technology or the desired
functions have not been implemented before.

G. EMERGING PRINCIPLES OF ARCHITECTING
The previous discussion highlighted the importance of architectures in many different domains
from product development to large infrastructures. One may ask whether there are generalizable
insights to be gained across these domains. One may even go further and attempt to uncover or
formulate “principles of architecting.” A principle is a statement that is almost universally true and
is long enduring. We contrast principles of architecting with methods and tools, which might
become obsolete on shorter time scales.

Prof. Ed Crawley has been collecting principles of architecting over the last five years in his
course on systems architecture at MIT, and there is empirical evidence that such principles might
exist, regardless of whether one considers, civil, computer, product or other architectures.
Principles can be either descriptive (how things are) or prescriptive (how things ought to be).

An example of a principle of systems architecting is: Robust functionality drives essential
complexity. This is a descriptive statement that introduces a third notion of complexity, aside from
structural/behavioral and interface complexity as described above. Essential complexity is a
theoretical lower bound to the complexity of a system, required to achieve a specified function or
set of functions with desired precision, efficiency and repeatability. The existence of such a lower
bound has not been proven. This is in sharp contrast to lower bounds in other disciplines, e.g.,
Shannon’s bound in information theory.

Let us consider a very simple example to explore the proposed essential complexity principle of
systems architecting. An example of simple systems of varying complexity are bottle cork
removers. They come in various shapes and sizes, and use a variety of working principles (spiral
screws, vacuum pumps, gas injectors…). They are all designed to fulfill essentially the same
function. Expressed in its essential form, this function is to get the cork out of the neck of the
bottle. Most commercial realizations operate by exerting an axial force on the cork, reacting this
force axially on the bottle. Those that tend to fulfill the function more robustly, e.g., requiring less
force, also tend to be more complex. That is, they have more system elements and interactions,
and may require more steps to operate. Good system designers attempt to design for simplicity,
but usually some amount of gratuitous complexity is introduced. This unnecessary amount of
complexity is the difference between the (unknown) essential complexity and the actual
complexity of the final product or system. Good architectures, according to this principle, have
minimal gratuitous complexity.

Further principles of architecture might emerge over time, but they can only be viewed as
heuristic guidance until they are proven by rigorous mathematical proofs and physical evidence in
actual systems. There is debate whether such rigor is achievable or necessary in practice.

Table 2 categorizes some of the activities involved in architecting a complex engineering system.
These are partitioned into two phases and two types of considerations. While these activities do
not rise to the level of principles, it is felt that these steps are involved in the creation of many—if
not all—architected systems.

19

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

 Technical Matters Non-Technical Matters
“Direct” design aimed at
achieving the main
functions—these are the
functions required
immediately upon initial
fielding of the system

Determine structure that
achieves properties and
behavior
Manage complexity “in the
box” using clustering,
interface clarity, and other
principles of architecting
Be mindful of uncertainty
Prepare for verification at
multiple levels

Consider multiple
stakeholders
Manage complexity at the
human interfaces
Match system architecture to
the architecture of the
context and stakeholder
organizations
Prepare for validation at
multiple levels

Planning for the life cycle
(manufacturing, operations,
upgrade, retirement) plus
achieving the ilities
(reliability, flexibility,
operability, etc.)

Be mindful of emergence,
including technological
evolution and disruptions
Prepare for upgrades,
customization, repair
See to reliability, durability,
scalability

Consider multiple
stakeholders
Be mindful of emergence,
including human agency
Be mindful of changing
missions and circumstances

Table 2: Considerations Applicable to Architecting Complex Engineering Systems
The term “be mindful” is an acknowledgement that systematic procedures do not exist for

obtaining many desirable features of a complex system.

Direct design encompasses traditional engineering that is aimed at achieving the system’s main
recognized functions. Life-cycle planning addresses the ilities as well as activities normally
associated with the system’s life. Technical matters begin with the act of architecting itself
(structure > properties > behavior) but extend to other requirements. Non-technical matters
include non-physical architectures and the activities of people as users, passive participants, or
observers of the system.

H. CRITICAL PROPERTIES OF SYSTEMS AFFECTED BY
ARCHITECTURE

1. DELIVERY OF BASIC FUNCTION
Architecture as “arrangement of entities and relationships between them” or as “relationship
between form and function” is the designer’s solution to the problem of finding a physical
embodiment that will deliver the required functions. Example decisions include that cited above
between the basically radial style of piston and high-bypass jet engines on the one hand and the
basically axial style of low-bypass jet engines. Each of these delivers thrust but in very different
functional ways.

Traditionally, design to achieve basic function focuses on performance, time to market, cost, and
risk. Maier and Rechtin (2000, figure 5.2) show these four quantities as being in tension with each
other. One of the main jobs of architects and product designers is to understand and resolve this
tension. Traditional engineering education tends to focus on performance. Adding time and cost
creates a complex interaction in which elements of each must be traded off in order to arrive at a
design. Risk is the most difficult dimension to understand and address. A wide array of methods,
intellectual frameworks, and computerized tools has emerged to support this process. These
include traditional engineering design (Pahl and Beitz 1991), axiomatic design (Suh 2001),

20

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

product design and development (Ulrich and Eppinger 2000), constraint management (Goldratt
1991), computer-aided design and manufacturing software, the design/dependency structure
matrix (Steward 1995), time to market and time to profit metrics, among others. It can be debated
whether risk should be treated as a separate entity, or whether it acts as a qualifier on
performance, schedule and cost (Browning et al. 2002).

2. OTHER PROPERTIES
From a traditional point of view, it is comparatively easy to say what the functions of a product,
system, or enterprise should be. An airplane must fly, a manufacturing company must design and
deliver products, and so on. But it has to do these things well, and here is where properties called
ilities come into play. Examples include robustness, adaptability, flexibility, safety, and scalability,
to name a few. The architecture has a strong influence on how the ilities are achieved and how
their achievement interacts among themselves and with the basic function.

Doyle says that comparatively little effort is devoted to assuring that an entity like an airplane will
provide the required functions of lift and forward speed. The rest is overwhelmingly large and
comprises providing safety, redundancy, amenities, automated functions, and so on. But this
statement must be tempered by the thought that lift and forward speed may not be a complete
statement of the required function. Only by considering the aircraft in the narrowest sense can
this list be considered complete. At a minimum it must deliver lift and speed with sufficient safety
and fuel efficiency. It also must be able to take off and land on required or available runways and
must be able to make an emergency landing right after takeoff. These additional basic functions
add severe constraints to speed and lift specifications. Things are further complicated when
various types of internal and external payloads and delivery processes are considered.

Boeing manufacturing employees acknowledge that the design engineers mainly focus on
assuring that the aircraft will not physically break during takeoff, flight, and landing. The rest,
including manufacturability, is addressed by others who petition the design engineers to pay
attention to these other needs. Similarly at Ford, the body engineers focus mainly on structural
integrity, stiffness, crash-resistance, and squeaks and rattles. The manufacturing engineers
perform a function similar to those of their Boeing counterparts.

More generally, the requirements must be stated in the context of the enterprise. This means that
the product has to satisfy a combination of interlocking technical and business requirements. The
aircraft must be able to take off fully loaded with revenue cargo and over its lifetime must return a
profit to its owner who will pay ten times more for fuel and maintenance that its original purchase
cost. Not only must the gravity-lift equation balance but the cost-revenue equation must do so as
well. At Boeing this is called “making the business case close,” and failure to close the business
case is often the reason why aircraft programs are cancelled or aircraft do not succeed in the
market.

The architecture of the product has a large influence on how these other properties are achieved,
as well as how well and how efficiently. An example was given in Figure 3.

The next few subsections discuss specific ilities.

a) Robustness
Robustness is defined as “the demonstrated or promised ability of a system to perform under a
variety of circumstances, including the ability to deliver desired functions in spite of changes in
the environment, uses, or internal variations that are either built-in or emergent” (ESD 2002).

21

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Robustness may be implemented in several ways, including by paying attention to the reliability of
system elements as well as reliability of interconnections. In addition, robustness may be
enhanced by the structure of the system, such as by providing alternate paths or backup
systems. An intellectual framework for designing robust systems revolves around the P-diagram,
which is a discipline for identifying “noises” from within or outside the system (see Figure 12).
Engineers are asked to create a P-diagram for their component, subsystem, or system.
Identification of the noise factors is the most difficult part of this process, since this identification
requires engineers to think beyond the boundaries of their part. A lot of knowledge about
interactions from other systems, including customers, is needed. At Boeing, the pilot is
considered a possible noise source. As more comprehensive subsystems and systems are
considered, developing their P-diagrams involves more people. There is some question as to
whether the noise factors for an entire system can be identified.

Figure 12: The P-Diagram.
(Source: http://thequalityportal.com)

The P-diagram approach, however, does not address the role of architectural form in providing
robustness. The network theorists (Barabasi, Doyle, and others) note that different network
architectures are differently able to resist attack. Doyle, however, says that additional effort at
providing robustness only adds layers of system elements and connections, providing only
additional complexity and points of potential failure (Doyle and Carlson 2000). Perrow (1999)
makes the same observation. Thus there is no consensus on whether architectural form by itself
can impart robustness to a system. Nevertheless, it is known that certain forms are easier to
understand, partition to avoid cascading failures, diagnose, and maintain. These generally have a
more modular structure and were designed with careful attention to keeping the modules
separate.

b) Adaptability
Adaptability is defined as “the ability of a system to change internally to fit changes in its
environment,” usually by self-modification to the system itself (ESD 2002). Such systems contain
sensors, control algorithms, and human operators. The technical portions must be designed to be
stable while the human elements must be trained to distinguish desired signals from distracting
noise. The technical architecture of such control systems is well developed but holds some risks
when decisions must be made quickly and the behavior of the system is not well understood, or
when the human interface is not well designed (Perrow 1999).

22

http://thequalityportal.com/

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

c) Flexibility
Flexibility is defined as “the property of a system that is capable of undergoing classes of
changes with relative ease. Such changes can occur in several ways: a system of roads is
flexible if it permits a driver to go from one point to another using several paths. Flexibility may
indicate the ease of ‘programming’ the system to achieve a variety of functions. Flexibility may
indicate the ease of changing the system’s requirements with a relatively small increase in
complexity and rework” (ESD 2002). Flexible systems include product families that can be
configured to meet changing markets. An example is a family of aircraft where the fuselage can
be lengthened merely by adding short sections fore and aft of the center section. At an enterprise
level, a flexible system can deliver products or services quickly and accurately in response to
real-time demands. An example is Dell’s manufacturing, supply chain, and fulfillment system. In
both example cases, the flexibility arises from the architecture of the system itself, which exploits
defined interfaces to permit substitutions at predefined points in the product or process.

Flexibility can be thought of as a means of managing risk, specifically risk that the system as
designed will not meet its requirements some time in the future. The flexibility committee’s paper
(de Neufville et al. 2004) notes that financial options theory can be applied to determine the value
of providing (at some cost) the flexibility to respond to future contingencies. These options permit
some decision about the system to be delayed until more information is available. Financial
options have been used this way for decades. They have the advantage that future value can be
calculated. In addition, there is some equivalence of value between different options since they all
can be reduced to money and can be readily substituted for one another. Whether this can be
accomplished in physical systems is the subject of future research.

d) Safety
Safety is defined as “the property of being free from accidents or unacceptable losses.”
Associated with this definition are several others: An accident is “an undesired and unplanned
(but not necessarily unanticipated) event that results in a specified level of loss” (human,
economic, etc). A hazard is “a state or sets of conditions that, together with worst-case external
conditions, can lead to an accident.” Risk is “the level of hazard combined with the likelihood of
the hazard leading to an accident, and the duration of exposure to the hazard” (Leveson 1995).

Endowing a system with safety involves determining, among other things, how safe is safe
enough. This question is beyond the scope of architecture alone; however, architecture can
improve or reduce safety in various ways. Systems whose architecture is transparent are easier
to diagnose, and hazards may be easier to detect and prevent. No method exists, however, to
compare the safety of two architectures.

e) Scalability

Scalability is defined as “the ability of a system to maintain its performance and function, and
retain all its desired properties when its scale is increased greatly, without causing a
corresponding increase in the system’s complexity” (ESD 2002). Ways of increasing the scale of
a system include increasing the number of elements, increasing the number of possible paths or
connections between elements, increasing the “traffic” capacity of links or connections, or all of
the above. The degree to which the complexity of the system increases depends greatly on how
the structure is designed and how or if it changes as the scale is increased. Some architectures
permit additional scale by adding identical subsystems. Short and long truss-style bridges and
short and tall buildings can be made this way. Others permit additional scale by adding differently
structured layers. An example is the US national wired telephone system.

Most systems incur increased complexity as their scale increases. Taller buildings require
segmented elevator systems since a single elevator cannot be built taller than a limit that is now

23

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

less than building height. Coordination of these elevators to permit people to travel the full height
of the building can be complex. Some plans for mega-buildings envision creating separate
stacked modules for full-time living that do not require residents to move beyond their module.
This reduces the complexity problem to that of the identical layers method.

Really large systems pose particular challenges. Each has its own architecture and scaling
properties. Some are built in an evolutionary way rather than being manufactured repetitively
according to a standard pattern that was established before construction begins. Some, like the
International Space Station, cannot be assembled and tested before being put into use. They are
so complex, and their operating environment is so hard or costly to duplicate, that they cannot be
tested end to end prior to deployment. In some cases, very large infrastructures can be
implemented in pieces and each piece can be tested before it is added to the existing system.
This approach is sometimes referred to as “staged deployment.” Staged deployment for large
constellations of communications satellites has been proposed as a way to reduce economic
risks for systems such as Iridium and Globalstar, which were designed “all at once”, rather than in
a staged manner (de Weck et al. 2003). But success in these tests does not guarantee that
unexpected behaviors will not emerge after the larger system begins to operate. This and other
issues of scale remain unresolved.

I . OPEN RESEARCH QUESTIONS
In this section, we list a number of research questions that may have definite answers or may
become recurrent themes without final resolution. The list is not intended to be exhaustive, but
rather to be illustrative and provocative. Our hope is that the field of engineering systems
architecture will create an effective way of thinking about complex systems, generate a shared
vocabulary, develop and validate research methodologies, and improve the practice of generating
and evaluating system architectures.

The list of questions follows:

Systems that are complex enough to be of interest to the Engineering Systems Division exhibit
emergent behavior. Some emergent behavior may be beneficial because it gives the system
desired qualities that the parts of the system do not have by themselves. But some emergent
behavior is detrimental because it represents sneak paths or other unpredicted behavior that is
not wanted. How can we get the good without the bad, or at least predict and mitigate the bad?
Perhaps this should be called “emergence management.”

Is emergence management possible, or do the methods we use now (testing, redundancy,
sensors, etc.) only add complexity and introduce emergence elsewhere in the system?

Is complexity inevitable in systems that are commercially meaningful or that do enough good
things well to make them worth building? Are there less complex alternatives that could do the job
just as well, such as locally generated electricity as an alternative to central generators and
complex distribution grids?

In principle, all the behaviors of a system could be predicted if we pursued reductionism to its
limit, modeling and testing every element and every combination of elements, but this limit is
unachievable in practical cases. Emergence is the opposite of reductionism.

Cognitive limits prevent us from thinking of everything. They also prevent us from making perfect
models of real systems. Incomplete or inaccurate models are another source of emergence.

Are there architectures that can minimize the effects of cognitive limits? Hierarchies are one such
architecture, but can they be used in all systems and do they apply to all types and
consequences of cognitive limits?

24

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Will human agency inevitably create emergent behavior? Agency can arise due to cognitive limits
or willful intent. Perrow (1999) argues that some systems will always be too complex to design or
operate properly and thus should not be built. Weick et al. (1999) argue that people’s ability to
improvise and use their accumulated experience is the only known barrier to emergence, but this
argument applies only in emergencies in the examples they cite.

Systems where reductionism appears to work are often those that exhibit a great deal of
modularity. An example is low-power micro-electronics. In these cases the individual modules can
be modeled and their models validated separately. Additionally, their behavior when connected
into systems is reasonably predictable. This is accomplished by several means, such as
enforcing standardization and forcing interfaces to be one-way, via huge impedance mismatches.
What are the limits of extending this approach to all systems?

How many kinds of things can usefully be said to have architectures? Examples include systems,
products, organizations, and processes.

What are ilities, and can they be classified? A suggested classification comprises two types:
those used during system design to anticipate future uncertainties, such as manufacturing,
normal use, abnormal use, technological or market evolution, and so on; and qualifiers on
performance or fitness, such as cost, robustness, safety, or reliability.

Can systems be classified? Classes could include primary function delivered, logical or physical
structural type, operating power level, type of enterprise (public/private), type of use pattern
(product, infrastructure), or degree of evolution over time. What characteristics do all classes
share, and what characteristics distinguish them?

How can the relative or absolute complexity of a system be measured, or can systems even be
ordered according to complexity? Can other system characteristics, such as reliability, be
normalized with respect to complexity in order to create a scale of expectations against which the
reliability per unit of complexity (for example) can be judged?

How do we evaluate the ilities content of a system?

More generally, how can the “goodness” of a system be evaluated?

What is the difference between designing a new system and designing one to fit legacy systems,
predefined and populated product families, existing standards of product, interface, or process?
How much in terms of functions or ilities is lost when these constraints are applied, what is
gained, and is the gain worth it?

To what degree do these constraints inhibit the inclusion of new technologies, or do new
technologies simply invalidate old architectures?

How do we represent the architecture of a system? How many things need to be in the
representation? For example, a network can represent the simple binary relationships between
system elements, but it may require another network to describe some of the strengths or
histories of these relationships. Some relationships might be static (i.e., they are permanently
present); others might only exist temporarily or during certain operating or failure modes. What
aspects of an architecture cannot be represented by a network or networks, and how should they
be represented? Can there be a unified representation of system architectures that captures
simultaneously both structure (objects) and behavior (processes), or must we inevitably resort to
multiple, related views?

If we say that systems have properties, structure, and behaviors (alternately structure, functions,
and organization), what methods exist for describing, modeling, testing, and synthesizing these?

25

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Are certain kinds of structures or architectures known to be good and would this apply across the
variety of domains discussed here? It is often recommended that functional and physical
structures should correspond, having similar clusters. This is obviously a cognitive aid, but is it
always a good thing in other dimensions of function or ilities? For example, combat systems have
distributed physical structure in order to be robust against point damage. Another example is
highly clustered networks: they provide shorter paths and are much more robust to random node
damage but much less robust to deliberate attack on the hubs than are random networks.

Are natural systems good exemplars for designed engineered systems? Some natural systems
have ilities that we would like engineered systems to have, such as flexibility and robustness,
even when individual modules are not very reliable.

Do different observers or participants in an architecture require different representations?
Examples include the designer, the user, the manager of a family of items in an architecture, a
safety or risk analyst.

Is there a process for generating an architecture that will have certain desired properties while
avoiding certain undesired ones? Typically, architectures themselves emerge from an
evolutionary process that weeds out unfit ones according to market pressures on functions or
pressures on the ilities. There are heuristics but no theory or guaranteed algorithms.

How determinative is architecture (compared to detailed design, module behavior, and behavior
of users or operators) in deciding how a system will behave, how it comes out on the scales of
ilities, etc.? For example, Doyle and Carlson (2000), Barabasi et al. (2002), Strogatz (2001), and
Watts (1999) argue in various ways that highly clustered networks are better in some respects
than random ones even if the nodes are the same. But up to now these analyses have assumed
identical nodes and arcs. What if these are allowed to be different? Is structure still dominant?

J. CONCLUSIONS
> The architecture is the form of the system and is the dominant factor in its

behavior. In some cases the function can be deduced by inspecting the form while
in others (for example, software), the form conveys nothing about the function.

> Systems have behaviors that no subsets of their elements have. These behaviors
are products of the interactions between the elements. They may be anticipated
and designed in, or they may be unanticipated, in which case they are called
emergent. Both anticipated and emergent properties may be desirable or
undesirable.

> Emergent properties, desirable and undesirable, exist because we do not
understand the system or its interactions with its context completely.

> To the extent that emergent behavior is caused by unpredictable factors such as
human agency, future changes to the system, or the inability to model every
possible system state, it may never be possible to prove that a given architecture
has or does not have a particular behavior.

> The aim of system design, and of architectural design within system design, is to
obtain the desired behaviors (functions plus ilities) while suppressing undesirable
behaviors. The system’s architecture is chosen to enhance achievement of these
goals. A key issue for future research is to learn how to create systems with the
desired behaviors and to predict and suppress the undesired ones.

> Systems have multiple architectures and hierarchies of architectures. This can
occur because of the choice in defining the system’s boundary. It also occurs
because the system has both a physical architecture and numerous virtual

26

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

architectures that seek to capture important aspects or views of its behavior. Many
of these virtual architectures correspond to mental models of different behaviors.

> Multiple representations are needed to describe systems and their architectures.
Many aspects of system architectures can be described by networks of one kind or
another, but not all architectures can be described this way (houses,
microprocessors). Network analysis is the most abstract architectural modeling
method and holds promise for elucidating general properties of architectures;
however, typical networks represent only connectivity. Hence, more specific
models than those currently in use will likely be needed.

> There are some basic architectural elements from which more complex
architectures can be built. Some kinds of desirable system behaviors can be
obtained by using these primitives singly or in combination. Thus it is desirable to
understand these elements more completely in order to understand how to use
them in architectural design. (This is a version of the statement that structure
begets properties which beget behavior.) Standards and standard components and
procedures can be thought of as primitives.

K. SELECTED BIBLIOGRAPHY

Albert, Reka, and Albert-Laszlo Barabasi. 2002. Statistical Mechanics of Complex
Networks. Rev Mod Phys 24 (January):47-97.

Allen, Thomas, Deborah Nightingale, and Earll Murman. 2004. Engineering Systems: An
Enterprise Perspective. Paper presented at the MIT Engineering Systems Symposium, 29-31
March, at Cambridge, Mass. http://esd.mit.edu/symposium/monograph.

Engineering Systems Division (ESD). 2002. ESD Symposium Committee Overview. In
Proceedings of MIT ESD Internal Symposium. Cambridge, Mass.: ESD. http://esd.mit.edu/WPS.

Baldwin, Carliss Y., and Kim B. Clark. 2000. Design Rules: Volume 1. The Power of
Modularity. Cambridge, Mass.: MIT Press.

Barabasi, A. L., and R. Albert. 1999. Emergence of Scaling in Random Networks. Science
286(5439):509-512.

Barabasi, A. L., H. Jeong, et al. 2002. Evolution of the Social Network of Scientific
Collaborations. Physica A 311(3-4):590-614.

Browning, T. R., J. J. Deyst, S. D. Eppinger, and D. E. Whitney. 2002. Adding Value in
Product Development by Creating Information and Reducing Risk. IEEE Trans on Engineering
Management 49(4):443-458.

Carlson, J. M., and J. Doyle. 2002. Complexity and Robustness. Proceedings of the
National Academy of Sciences of the United States of America 99:2538-2545.

Carlson, J. M., and J. Doyle. 1999. Highly Optimized Tolerance: A Mechanism for Power
Laws in Designed Systems. Phys Rev E 60(2):1412-1427.

Christensen, Clayton M. 1997. The Innovator's Dilemma. Boston: Harvard Business School
Press.

de Weck, O., R. de Neufville, and M. Chaize M. 2003. Enhancing the Economics of
Communication Satellites via Staged Deployment and Orbital Reconfiguration. Paper AIAA-2003-

27

http://esd.mit.edu/symposium/monograph
http://esd.mit.edu/WPS

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

6317, presented at the AIAA Space 2003 Conference and Exhibition, 23-25 September, at Long
Beach, California.

De Neufville, Richard, et al. 2004. Uncertainty Management for Engineering Systems
Planning and Research. Paper presented at the MIT Engineering Systems Symposium, 29-31
March, at Cambridge, Mass. http://esd.mit.edu/symposium/monograph.

Doyle, J., and J. M. Carlson. 2000. Power Laws, Highly Optimized Tolerance, and
Generalized Source Coding. Physical Review Letters 84(24):5656-5659.

Fine, C. H. 1998. Clockspeed. Reading, Mass.: Perseus Books.

Goldratt, E. M. 1992. The Goal: A Process of Ongoing Improvement, 2nd ed. Great
Barrington, Mass.: North River Press Publishing Corporation.

Henderson, R. M., and K. B. Clark. 1990. Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms. Administrative Science
Quarterly 35(1):9-30.

Kitano, H. 2002. Systems Biology: A Brief Overview. Science 295(1 March):1662-1664.

Leveson, N. 1995. Safeware. Boston: Addison-Wesley.

Levis, A. 1999. System Architectures. Pages 427-454 in Handbook of Systems Engineering
and Management, edited by A. P. Sage and W. B. Rouse. New York: John Wiley & Sons.

Maier, M. W., and E. Rechtin. 2000. The Art of Systems Architecting, 2nd ed. Boca Raton,
Fla.: CRC Press.

Pahl, G., and W. Beitz. 1991. Engineering Design. London: Springer.

Perrow, C. 1999. Normal Accidents, revised ed. Princeton, N.J.: Princeton University Press.

Ravasz. E., A. L. Somera, D. Mongru, Z. N. Oltvai, and A.-L. Barabasi. 2002. Hierarchical
Organization of Modularity in Metabolic Networks. Science 297(30 August):1551-1555.

Rechtin, E. 1990 Systems Architecting Prentice Hall PTR

Reynolds, D., J. M. Carlson, et al. 2002. Design Degrees of Freedom and Mechanisms for
Complexity. Physical Review E 66(1).

Simchi-Levi, D. P. Kaminsky, and E. Simchi-Levi. 2002. Designing and Managing the
Supply Chain: Concepts, Strategies and Case Studies, 2nd ed. New York: McGraw-Hill.

Sloan, Alfred. 1996. My Years with General Motors. New York: Doubleday.

Smith, G., and D. A. Mindell. 2000. The Emergence of the Turbofan Engine. Pages 107-
156 in Atmospheric Flight in the Twentieth Century, edited by Peter Galison and Alex Roland.
Vol. 3. ARCHIMEDES New Studies in the History and Philosophy of Science and Technology.
Dordrecht: Kluwer Academic Publishers.

Sterman, J. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex
World. Boston: Irwin/McGraw-Hill.

28

http://esd.mit.edu/symposium/monograph

E N G I N E E R I N G S Y S T E M S M O N O G R A P H

Steward, Donald. 1995. Systems Analysis and Management: Structure, Strategy, and
Design. Fair Oaks, Calif.: Problematics.

Strogatz, S. 2001. Exploring Complex Networks. Nature 410(8 March):268-276.

Suh, N. P. 2001. Axiomatic Design. New York: Oxford University Press.

Cutcher-Gershenfeld, J., F. Field, R. Hall, R. Kirchain, D. Marks, K. Oye, and J. Sussman.
2004. Sustainability as an Organizing Principle for Large-Scale Systems. Paper presented at the
MIT Engineering Systems Symposium, 29-31 March, at Cambridge, Mass.
http://esd.mit.edu/symposium/monograph.

Ulrich, Karl T., and Steven D. Eppinger. 2000. Product Design and Development, 2nd ed.
New York: Irwin/McGraw-Hill.

Utterback, J. M. 1994. Mastering the Dynamics of Innovation: How Companies Can Seize
Opportunities in the Face of Technological Change. Boston: Harvard Business School Press.

von Meier, Alexandra. 2003. California Energy Commission: Power Delivery Systems
Overview, June 4. http://ciee.ucop.edu/dretd/03_06_04_Power.pdf

Watts, D. J. 1999. Small Worlds: The Dynamics of Networks between Order and
Randomness. Princeton, N.J.: Princeton University Press.

Watts, D. J., and S. Strogatz. 1998. Collective Dynamics of ”Small-World” Networks. Nature
393(4 June):440-442.

Weick, K., K. Sutcliffe, and D. Obstfeld. 1999. Organizing for High Reliability. Res in Org
Beh 21:81-123.

Whitney, D. E. 1996. Why Mechanical Design Will Never be Like VLSI Design. Research in
Engineering Design 8:125-138.

Whitney, D., Q. Dong, J. Judson, and G. Mascoli. 1999. Introducing Knowledge-based
Engineering into a Tightly Coupled Product Development Environment. Paper presented at the
ASME Design Engineering Technical Conferences, 12-16 September, in Las Vegas, Nev.

29

http://esd.mit.edu/symposium/monograph
http://ciee.ucop.edu/dretd/03_06_04_Power.pdf

