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1. Introduction
Since the beginning of the space program, the National Aeronautics and Space

Administration (NASA) has collected several terabytes of data about our solar system. In
fact, the amount of data available far exceeds the combined analytical capacity of the entire
planetary science community. As part of an effort to mitigate this problem, NASA has
created a data management tool called the Planetary Data System (PDS)." The PDS,
established in the early 1990s, is an arrangement of eight nodes located at various NASA
Centers, universities, and research institutions across the country. Although the use of the
PDS is currently somewhat limited, the intent is that it eventually will be the primary
repository of all planetary data. Therefore, analyzing scientists’ usage of the PDS can
provide some important insights about the planetary science community. For example,
answering a few key questions could help the PDS system operators understand why the
system is not used to its full potential. One such question is: does the categorization of the
data match the research communities that actually form around those data?

One purpose of this project is to develop a better understanding of the usage of the
Planetary Data System. The system is used in two distinct but complementary ways.
The first is that the collectors of data can upload their data to the system to, in a sense,
“immortalize” it (a few people associated with PDS indicated in informal interviews that
it was important to have a system like PDS because the datasets can last forever, but

people do not). The second type of system usage occurs when scientists or others

" All background information about the Planetary Data System in this section from: National Aeronautics
and Space Administration, “About PDS,” Planetary Data System, <http://pds.jpl.nasa.gov/aboutpds.html>,
accessed on May 11, 2006.



download the data for research or other purposes. This study focuses on the first type of
usage because data for the second type were sparse.

To study patterns of collaboration on the usage of the PDS, several representations of
the affiliation network are used. In the representation most typical to the social network
literature, a network was created with authors (of datasets) as nodes and datasets as the
edges. Other information about the PDS and the datasets are used to compare several
representations of essentially the same network of author collaborations and planetary
data. This information is also used to study the community structure and to compare
community algorithm results and centrality measures to contextual understanding of the
author roles and interactions. The use of multiple network representations allows us to
fulfill a second purpose — to examine some of the limitations of popular network analysis
techniques and metrics. We examine the basic statistics of each representation of the
network and consider the effects of representation and weighting on the results. The

paper concludes with some suggestions for future work in both of these areas.

1.1.  PDS Structure

The conceptual structure of the PDS is involves a central Project Management
office and eight separate nodes on which the data are contained. The term “PDS node”
used here is quite distinct from the network nodes discussed in this paper. Furthermore,
the PDS nodes are not just the servers on which the data are contained. The term actually
refers to “teams” of people that span research centers and universities. The five science
nodes, named for five major sub-disciplines of planetary science, are Atmospheres,
Geosciences, Planetary Plasma Interactions (PPI), Rings, and Small Bodies. The three
remaining nodes provide support. These nodes are Engineering, which “provides
systems engineering support to the entire project;” Navigational Ancillary Information
Facility (NAIF), which “supplies calibration and ephemeris information;” and Imaging,
which “offers expertise in sophisticated image processing.” Figure 1 shows the

conceptual layout of the PDS.
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Figure 1. The conceptual structure of the Planetary Data System.
Image courtesy of NASA. Source: http://pds.jpl.nasa.gov/files/node.pdf.

The Project Management function of the PDS is located at NASA Goddard Space
Flight Center (GSFC) in the Solar System Exploration Data Services Office. This,
however, implies a level of centralized control that does not exist in the actual
implementation of the system. Each of the nodes run independently of the others, and the
use of each node is dependent on the people managing it. The leadership of the nodes
changes every five years (the third selection was completed in June 2004) via a
competitive grant solicitation process run by NASA. These changes in PDS node
leadership can affect activity on the node. In some cases, the universities desire
management responsibility for a node not because of the scientific importance of the PDS
but because of political pressure and promise of funding for related programs. In many
ways, the PDS is as much a public relations tool as a data management tool. Therefore,
the actual structure of the PDS that has arisen from the loose-knit usage of the system is

rather different from the prescribed structure shown in Figure 1.



2. Network Representation

Much of the literature on the science of networks implies the importance of the
choice of representation on the structure of the network. Collaboration and affiliation
networks are often considered to fall into the broad category of “social” networks, but
this is not an entirely accurate description. The relationships between the actors are more
professional than social, and a relationship, once established, cannot be broken (the
authors cannot “unwrite” a paper). For these reasons, Watts and Strogatz (1998) refer to
the network of film actors as a “surrogate” for a social network but point out that the
aforementioned characteristics provide “the advantage of being much more easily
specified.” Additionally, Amaral et al (2000) refer to that network as an economic one
because it, in some way, represents the flow of money, at least within the film industry.

Furthermore, the meaning of the type of network can change considerably if the
human actors are represented as edges and the events as nodes. In any type of
collaboration network, a social network (broadly defined) surely exists among the authors
that develop and submit the datasets. Still, if the nodes and edges are switched, this same
network can be viewed as an information network in which the human actors serve as the
channels of information flow. As we will see, in the case of the Planetary Data System,
human actors can similarly represent links between technological artifacts. In this type of
representation, the same network might even be seen as a technological network. The
point of this line of reasoning is not to claim that humans serve as the wiring of an
engineered system but merely that the way that one chooses to represent a network can
have important effects on the results of the analysis. Still, surprisingly few papers
actually undergo a comparative analysis of the same network represented in a variety of
ways. In this paper, we compare 12 different representations of the PDS collaboration

network.

2.1.  Categorization of PDS Datasets
The datasets in the Planetary Data System are categorized on several levels. Each
dataset is located on one of the nine nodes (including a catch-all referred to as “N/A”),

and each is derived from data collected by a particular spacecraft or telescope, referred to



as an “instrument host” in the vocabulary of the PDS. A result of this structure is that the
links between authors are created not just by collaborating on the creation of a dataset but
also by working, perhaps independently of collaboration on the dataset, on the same PDS
node or instrument host. Furthermore, PDS nodes, instrument hosts, or datasets are

“connected” by the presence of common authors working on them.

2.2. Bipartite Network Representations and 1-Mode Projections

In the language of networks, this arrangement essentially means that three
bipartite networks can be extracted from the database. In each of these 2-mode networks,
authors represent one of type of node. The other type of node corresponds to PDS nodes,
instrument hosts, and datasets for each of the three networks. It would also be possible to
create other bipartite networks that do not involve authors, such as connecting datasets to
instruments hosts. This type of network, however, is unlikely to be as interesting. It
would not be surprising, for example, to demonstrate that a data set on some geological
property of Mars is located on the Geosciences PDS Node.

With the three separate bipartite affiliation networks established, we were able to
create 12 distinct 1-mode networks for comparative analysis. First, we split each of the
three bipartites, creating six separate 1-mode networks: (1) authors as nodes, PDS nodes
as edges; (2) PDS nodes as nodes, authors as edges; (3) authors as nodes, instrument
hosts as edges; (4) instrument hosts as nodes, authors as edges; (5) authors as nodes,
datasets as edges; and (6) datasets as nodes, authors as edges. For the sake of our
analysis, we refer to the representation of PDS nodes and instrument hosts as network
nodes as technological networks and the representation of datasets as network nodes as
an information network.

In addition, each of these networks contains an implicit weighting that results
from multiple collaborations between, say, two authors on several datasets or spacecraft.
In reality, this weighting is an intrinsic property of nearly all collaboration and affiliation
networks. Newman et al (2001) have done some analysis of bipartite networks without
making the simplification to a single mode, and Marchiori and Latora (2000) have even

made an attempt to quantify the strength of connections in a metric that they call



connectivity length. Still, the implicit weighting resulting from multiple nodes of one
mode between two nodes of the other mode is ignored in most of the literature.

In our analysis, we decided to compare the weighted and unweighted versions of the six
PDS networks. To do this, we created six additional networks by replacing each of the
non-zero values with 1s in each of the weighted networks to create an unweighted
network corresponding to each. In addition, like Marchiori and Latora, we consider the
entirety of the networks in most of our analysis (except where this is not possible) instead
of just the giant connected component. The process of splitting the PDS database into 12

weighted and unweighted 1-mode networks is represented in Figure 2.

PDS Database

Data Set 2-Mode Instrument Host 2-Mode PDS Node 2-Mode

Author 1-Mode Data Set 1-Mode

Weighted Unweighted

Figure 2. Hierarchical structure of the PDS network representations. The complete hierarchy is shown for
only one of the 1-mode representations and its weighted and unweighted versions to maintain clarity of
presentation, but the presence of the other 10 bottom-row elements (for a total of 12 networks used in the
study) is implied.



3. Network Statistics

In this section, we examine some of the basic statistics about the PDS network.
These statistics are presented in a table of the form presented in Mark Newman’s review

paper (2003). A discussion of the columns of Table I are in Sections 3.1 through 3.4.

Table 1. Table of the 12 networks extracted from the three bipartite networks of the PDS database. This
table is of the form of Table IT in Mark Newman’s review paper (2003). Instead of categorizing the
networks as social, information, technological, or biological, we separate them by representation — whether
authors or events are the nodes. We omitted the type of the network since all are undirected, and we also
omit one of the measures of clustering coefficient because our tools only computed the other. We have
added to this table the equivalent random network approximations for path length and clustering coefficient
in the column following each of those metrics.

logn/
Type of Node  Network  |Weighted? 1 m <k> I J'O_l]{: k> o« &) <psin r
PDS Modes Mo 439 274593 1253 0 1886 1260 0 -031 0 0981 0285 080
PDS Modes Yes 438 Z7E27 1254 0 14886 1260 031 0838 | 0286 OB0
Authors as  |Instrument Hosts Mo 435 240 | 37A 2703 1678 | 049 0828 | 00BE @~ OFS
Naodes Instrument Hosts e 439 a5a1 351 2703 1660 | 048 1.092 0.089 065
Diata Sets Mo 435 3240 14.8 31 2260 0B0D | 0936 0034 096
Diata Sets \CE 435 4366 199 3.1 2035 053 ) 1434 0045 | 0595
PDS Modes Mo 9 11 24 1.861 2458 0 -11 0E2 0272 | 070
PDS Modes Vs 9 28 6.2 1.861 1202 | 073 0 18927 0691 | -0A2
Events as Instrument Hosts Mo 103 282 64 2.426 2726 - 0715 | 0053 | 0039
Nodes Instrument Hosts Yes 103 520 10.1 2426 2.004 - 1676 | 0098 | 0042
Diata Sets Mo 1046 | 5820 11.1 2.761 2886 027 0937 | 00N 089
Diata Sets \CE 1046 | B514 126 2.761 2757 029 1456 02 0 097

3.1. Network Size

The networks resulting from our analysis of the PDS are relatively small in size.
The PDS contains 1,046 datasets with data from 103 instrument hosts on nine nodes of
the system (including the N/A node designation). The datasets have a total of 439
authors. Of course, the number of nodes is not affected by weighting, but the number of
edges is affected because weighting is represented as a number greater than 1 in the
adjacency matrix. In these networks, an edge has a value of 1 if it represents, for
example, one common data set between authors or one common author between
instrument hosts. An edge representing two such links in common would have a value of
2 in the adjacency matrix, and so on. Therefore, a weighted edge also could be drawn as

multiple edges between two nodes in the graph. In this way, m does represent the actual

? Many of these metrics were calculated with UCINET (Borgatti, 2002).



number of edges in the network. The effect on <k> of the weighting simply is a result of

the effect on m.

3.2.  Path Length and Clustering
Each of the 12 networks has a relatively short path length and extremely high
clustering coefficient. High clustering is not at all surprising for 1-mode projections of
bipartite networks. In a bipartite 0 2] 3] 0
network, each type of node can
connect only to a node of the other L B C D E OF oo o®w 1 1 E
type. Thus, each edge between
nodes of one type must be channeled

through a node of the other type.

L]
—

Thus, if multiple nodes of the former

type are channeled through the same

25}
]

node of the latter type, clusters (as

Figure 3. This simple projection of a bipartite network onto
a 1-mode network demonstrates the high clustering in the
necessarily arise in the 1-mode projection. Also note that another 1-mode consisting of

nodes 1, 2, 3, and 4 also could be created. In that network, a
projection. This is shown in Figure 3 triangle would exist between 2, 3, and 4, but 1 would be

connected only to 2. Thus, that 1-mode would have a lower
Conceptually and in Figure 4 for the clustering coefficient than the one shown here. Source:
Newman et al (2001)

Courtesy of National Academy of Sciences, U. S. A. Used with permission.

represented by triangle motifs) will

PDS network of authors and datasets.

This high clustering, in turn, Source: Newman, M. E., D. J. Watts, S. H. Strogatz. "Random graph models of social networks."
contributes to shorter path lengths. Proc Natl Acad Sci 99 (2002): 2566-72. (c) National Academy of Sciences, U.S.A.

Still, it is not entirely meaningful to discuss path length and clustering without
considering those metrics as compared to the expected values for a random network. For

this reason, these metrics are presented along with the actual values. Watts and Strogatz
(1998) use these random network approximations to determine whether a network can be

said to be a small world network. They define the small world phenomenon as />/

random

but C >> Cpandom- The second condition is clearly satisfied by all 12 of the networks with
the possible exception of the unweighted network of PDS nodes connected by authors as

edges, for which C = 0.62 and Ciapgom = 0.272.



{a)

Figure 4. Graphical representation of the bipartite network of authors and datasets. (a) The
bipartite network connecting authors (red circles) to datasets (black squares). (b) The
corresponding 1-mode social network with authors as nodes and datasets as edges. Note the
high frequency of triangle motifs and, therefore, high clustering in the unipartite network.



The first condition, however, is a bit more ambiguous. For both the weighted and

unweighted versions of each of the “social” networks, />/ but / is a good deal

random >

greater than /4,4, in some of the cases. In both “technological” networks (PDS nodes
and instrument hosts as nodes), weighting makes a significant difference for this small-
world condition. To understand this, first note that path length is independent of any
weighting on the edges.3 This can be illustrated by thinking of a weighted edge as
multiple edges between two nodes: when determining path length, one need only use one
of the edges. The definition of /.,,4,m, however, does depend on the weighting of the

for the

edges. Because of this effect, />/ for the weighted networks, but /</

random random

unweighted ones. As for the “information” network, /<! in the unweighted case,

random

though only by a small amount. In the weighted “information” network, however, this

small-world condition appears to be met: / >/

random *

Although the inclusion of weighted values for clustering and path length can
give a more complete picture of the network, it also can obscure the results and perhaps
even render these metrics meaningless. Indeed, one must be somewhat skeptical of the
clustering coefficients for the weighted networks since most of them are greater than 1.
Mathematically this result makes sense. If a weighted edge is represented as an
additional edge between the same pair of nodes, weighted edges in triangles could
substantially increase the number of triangles relative to the number of connected triples.
Still, this effect means that the clustering coefficient is not normalized. Similarly, the
result that weighting does not affect path length even while it does change the expected
path length of the equivalent random network also should be cause for suspicion.
Undoubtedly, more work needs to be done on the analysis of weighted networks.
Marchiori and Latora’s connectivity length (2000) provides a possible solution to some of

these problems, but it is not at all clear that this metric can resolve the entire issue.

? According to some measures, including connectivity length (Marchiori and Latora 2000), weighting can
be thought of as a length. In the representations used in this study, however, the lengths of all edges are
equal, and weighting is taken to be equivalent to having additional edges.
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3.3. Degree Distributions
3.3.1. Features of the Degree Distributions

Degree distributions are a popular means by which to understand the likelihood
that a node selected at random will have a high or low degree. Degree distributions are
one way that real graphs differ dramatically from random graphs, at least of the simple
type like those studied by Erdos and Rényi (1959). When edges in a graph are present or
absent with equal probability, the degree distribution of the graph is a Poisson or
binomial depending on its size. In many real networks, degree distributions have a “long
tail”. That is, there is a relatively (to a random graph) high probability that nodes of
degree much greater than the mean degree exist in the graph. Cumulative degree
distribution graphs are often created to study the long tails of degree distributions because
simple histograms of degree are generally quite noisy. This is because the small number
of observations of nodes with high degree makes characterization of degree distribution
tails difficult.

It is customary in the network literature to determine whether the degree
distribution of the network of interest follows a power law. In this case, the probability of
a node occurring with degree k decreases as k increases proportional to k™. Networks
that follow this trend tend to have high-degree nodes (sometimes called “hubs”)
connected to lower-degree nodes. This can have interesting implications regarding the
relative importance a network’s nodes to overall connectivity for both technological and
social networks.

None of the degree distributions of the representations of the PDS networks
appear to follow a power law. As some of the literature suggests, this is expected for
affiliation networks because once an actor dies, he or she stops accruing links. This limits
the extent to which preferential attachment can occur (Amaral et al, 2000). While this
might explain the lack of power laws for the author representations, it does not
necessarily do so for the other representations.

The a coefficients reported in Table 1 were extracted from a fit to the left portion
of the degree distributions before the severe drop-offs (Figure 5). One of the degree
distributions, the “technological” network of instrument hosts connected by authors, does

appear to be exponential, as the cumulative plot on a lognormal scale is a straight line.

11



Rather than forcing the PDS degree distributions into the “power law” box, it is

more useful to note their anomalous characteristics. Figure 6 shows the histograms of

degrees for two of the network representations. The interesting feature of the degree

distributions of the network is the existence of a /arge number of nodes with high degree.

This occurs because of projects that involve collaboration of many authors on a single

dataset or when one author works on many different datasets, depending on the
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Figure 5. Cumulative degree distributions for the six unweighted PDS network representations. All

except the middle-right graph of the instrument-host “technological” network are shown on a log-log
scale. None clearly follow a power law, though the instrument-host-as-nodes network does follow an
exponential distribution.
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3.4. Degree Correlation =
Degree
3.4.1. Sign of the Degree Correlation
In the literature on networks, an Figure 6. Histograms of degree for two PDS network
representations.

interesting pattern has been observed in
degree correlations of different types of networks. In particular, it seems that social
networks tend to be assortative, meaning that they have positive degree correlations.
Technological and biological networks tend to be disassortative (have negative degree
correlations), and the assortativity of information networks is still more difficult to
characterize. In his review paper, Mark Newman (2003) notes, “It is not clear what the
explanation for this result is, or even if there is any one single explanation. (Probably
there is not.)” Nevertheless, it still is interesting to consider the extent to which the
networks derived from the PDS database follow these trends.

As stated previously, by most broad definitions, all of the networks with authors as
nodes are social networks. For the purposes of this analysis, we identify the network of

datasets as nodes to be an information network in which authors are the channels of
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information between nodes, and we label the networks of PDS nodes and instrument
hosts as technological networks by using the admittedly tenuous representation of authors
as interconnections between engineered systems. According to these representations, we
see positive degree correlations for all social and information networks regardless of
weighting. For technological networks, the results are somewhat more mixed. For PDS
nodes, the degree correlation is negative with and without weighting. For instrument
hosts, the correlation is close to zero in both cases, though it is slightly positive for the
unweighted network and slightly negative (with nearly identical magnitude) for the
weighted network. In fact, weighting does not seem to have any appreciable effect on
degree correlation since the magnitudes also seem to be similar with and without
weighting in most of the cases.

As Newman states, there may not be any real meaning behind the sign of the degree
correlation. Nevertheless, since we compared social, information, and technological
representations of essentially the same network and saw some relation between network
type and degree correlation, it may be that the sign of the correlation is dependent on the
choice of network representation. While this result would agree with Newman’s belief
that there is no real meaning, it could be an indication of interesting differences between
representations of a network. Still, there is other reason to question the validity of the

degree correlation, which is discussed in the next subsection.

3.4.2. Limitations of the Degree Correlation

The network literature does not stress the limitations of using the summary
statistic of degree correlation to describe networks. Correlation, or the Pearson
correlation coefficient (r in Table 1) more specifically, is a method to measure the
strength of the linear relationship between two variables. In this case, these two variables
are the degree on either side of each edge in a network. One of the most serious, and
well-known, limitations of the correlation coefficient is its sensitivity to extreme values.
This is the problem that leads to the high values (close to 1) of r reported in Table 1.

A figure from an introductory statistics textbook best illustrates this problem
(Chambers et al 1983). Figure 7 shows eight different scatter plots. The slope of the least

squares regression line fit to the data is the Pearson correlation coefficient (r). In each of
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these very different plots r is the same, 0.7. This is troublesome because the different
patterns in these data could presumably represent quite different relationships between
the two variables in question, and just reporting an r of 0.7 is misleading and incomplete.
The Graph (6) of Figure 7 is the case in which the degree correlation is most meaningful:

when the two variables are actually linearly associated with each other.
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Figure 7. The eight small plots on the left represent datasets of two variables that all have correlation
coefficients of 0.7. (Source: Chambers et al 1983) The two plots on the right are scatterplots of
degree for adjacent edges in two representations of the PDS network. The upper graph is authors
connected by collaboration on datasets (r = 0.96) and the lower graph is datasets connected by authors
(r=10.99). The extreme values (like the 99 points at degree 99 in the datasets graph) drive the
correlation coefficient to close to one.

Figure 7 also shows the scatter plots of degree for the network of authors
connected by collaboration on a dataset and for datasets connected by authors (the same
networks shown in Figure 6). The reason the degree correlation is close to 1 in these

cases is that the extreme values, the nodes with degree much larger than average,
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influence the results considerably. As the histograms in Figure 6 show, the extreme
values are not just one point but many. If the nodes with degree 99 are removed in the
datasets network, for example, the degree correlation becomes about 0.5. If all but one of
these points are removed, the degree correlation is about 0.7. It does not seem that
removing these nodes from the calculation of degree correlation would be correct,

however, because the nodes are a real, unique, and important part of the network.

4. Community Structure

Considering the structure of the PDS presented in Figure 1 and the emphasis
placed on the PDS nodes, one might expect the collaborations of scientists on datasets
submitted to the PDS to follow a pattern that maps to PDS nodes. For example, a
hypothesis is that scientists tend to collaborate on datasets that “belong” to the same PDS
node. This would mean that tightly knit areas in the affiliation network of authors
connected by collaboration on datasets would map onto the PDS nodes (following Girvan
and Newman 2002). Additionally, authors that contributed to datasets in multiple PDS
nodes would be important in connecting the entire network. An alternative hypothesis is
that the community structure (tightly knit areas of the author collaboration network) maps
onto the instrument hosts. That is, authors tend to collaborate on datasets collected by the
same spacecraft or telescope and that authors that work with more than one instrument
host are key in connecting the network.

To test these hypotheses, we ran the Newman-Girvan (Girvan and Newman 2002)
algorithm to find community structure in the author collaboration network for PDS
(authors connected by collaboration on datasets). We found the second hypothesis to be
true: the tightly knit communities correspond to different instrument hosts, and they do
not correspond well to PDS node. Figure 8 shows the results of this test for the two
largest connected components of this network. The node colors represent the instrument
host and the shapes represent the results of the Newman-Girvan algorithm. The algorithm

correctly places all but a few nodes in groups that correspond to instrument host.
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Figure 8. Results of the Newman-Girvan community structure algorithm (node shape) compared to
instrument host affiliation (node color). Betweenness is represented by node size, and authors that worked
on multiple instrument hosts are red nodes. This indicates that nodes with high betweenness are generally
between clusters of authors that work on different instrument hosts, which is the reason Newman-Girvan
algorithm works.

17



The finding that the Newman-Girvan algorithm “works” for instrument hosts but
not for PDS nodes yields insight into how the authors of datasets actually work together.
A missing piece of the puzzle is how the authors of papers that use the data collaborate.
Unfortunately the citing mechanisms for the PDS are too inconsistent for a Web of
Science search to be used to create a citation network around these publications. The
“NASA Planetary Data System” is a listed citation in the Web of Science but it only
returns two papers. The PDS administrators have only recently begun to stress a
systematic citation procedure, and only two of the nodes have adopted it so far.

Despite this limitation, it is interesting that such an anonymous technique like the
Newman-Girvan algorithm correctly identifies the community structure in the network of
PDS dataset authors. It is intuitive that communities for dataset creation would surround
the instrument hosts that are used to actually collect the data. It is also intuitive that the
authors with largest betweenness (shown as node size in Figure 8) would be those that
work with multiple instrument hosts (shown as red in Figure 8). It is an encouraging
result for the Newman-Girvan algorithm that it correctly categorizes these communities.
Girvan and Newman (2002) present similar tests of how well their algorithm works to
identify “subject matter” communities (e.g. physics, economics) for other author
affiliation networks like that from the citations of papers written by people affiliated with

the Sante Fe Institute.

5. Centrality

One of the themes of the literature on networks, particularly social networks, is
centrality. The best known social network in which centrality is a key issue is that of film
actors. The common belief is that Kevin Bacon is somehow the center of the Hollywood
universe. In reality, virtually any actor can appear to be the center of that network
because it satisfies the small world conditions. The true center of the film actor network
is Rod Steiger; Kevin Bacon ranks only 1,049.* The meaning of these results is limited.
First, the only centrality metric used to determine the “best centers” in this network is

closeness. Secondly, the weighting of the edges is not taken into account in the literature

* Tjaden, B. and Department of Computer Science, University of Virginia, The Oracle of Bacon at
Virginia, <http://www.cs.virginia.edu/oracle/>, accessed April 28, 2006.
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on this network.” Finally, the literature examines only the network of actors and does not
look at the complementary network of movies — the most central movie might provide
some insight about the network as well. In this section, we examine the centrality of the
PDS network with special consideration to these aspects that are largely ignored in the

literature.

5.1.  Overall Centralization and Network Representation
The purpose of this subsection is to determine the relationship between network
representation and overall centralization of the network, at least in the special case of the
PDS network. The effects of the choice of 1-mode projection and of weighting both
depend on the measure of centrality used. Table 2 summarizes the degree, closeness,
betweenness, and eigenvector centrality of the 12 representations of the PDS network.
Table 2. Overall centrality measures for the 12 networks derived from the PDS database. Network

representation and weighting both can affect some of the measures, though some of the measures are
not valid for some of the networks.

Centrality Measure
Type of Node Network Weighted? | Degree Closeness = Betweenness | Eigenvector
PDS Nodes Mo 0.3349 0.364 0136 0.080
PDS Nodes Yag 0172 0.364 0136 0.062
Authors as  |Instrument Hosts Mo 0237 Unconnected 0147 0.145
Nodes Instrurnent Hosts e 0.043 Unconnected 0.147 0276
Data Sets Mo 0120 Unconnected 0.026 0.354
Data Sets Yo 0.026 Unconnected 0.026 0.014
PDS Nodes Mo 0571 0.578 0.605 0.563
PDS Nodes Yag 0.314 0.578 0.605 2152
Events as Instrument Hosts Mo 0.205 Unconnected 0.074 0.385
Nodes Instrurnent Hosts e 0.046 Unconnected 0.074 1.656
Data Sets Mo 0.084 Unconnected 0.004 0132
Data Sets Yog 0.006 Unconnected 0.004 0512

The first interesting result enumerated in this table is that closeness centrality is
an invalid metric for unconnected networks (in this case, all but the PDS networks). The
reason for this is that the path lengths between nodes in disconnected components are
infinite. However, this is exactly the metric that is used in the analysis of the film actor

network. Because of this characteristic, the literature on film actors concentrates only on

> Of course, because weighting does not affect path length, it does not affect closeness centrality either.
Nevertheless, weighting does affect other centrality metrics, as will be explained.
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the giant connected component, which accounts for about 90 percent of the actors (Watts,
1999). Although this metric might still be useful given such a large main component, this
is not necessarily the case for all social networks. Marchiori and Latora (2000) attempt to
include the entire network in this type of analysis by incorporating their connectivity
length metric, but the usefulness of this metric has not been tested in other works.
Therefore, it is important that other centrality measures be used to characterize these
networks.

As was discussed earlier in the paper, the weighing of edges in a network does not
affect path length. As a result, closeness and betweenness centrality are the same for
each network regardless of weighting. On the other hand, weighting does affect degree
centrality. By thinking of a weighted edge as multiple edges (as explained previously),
we can see easily that a weighted edge means that the two nodes to which it is connected
have higher degree. The weighting of edges also affects eigenvector centrality, but it is
not entirely clear that this metric is actually indicative of the structure of the network
because it results in a centralization of greater than 100 percent for the weighted versions
of the information network and both technological networks.

For both the weighted and the unweighted case, the most centralized of the 12
networks is the network of PDS nodes. The reason for this becomes clear with just a
brief perusal through the web interface of the database.® Searching for datasets by
“Curating Node” reveals that there are hundreds of datasets on a few nodes but only a
handful on others. We will return to this aspect of the network when we discuss the most
central nodes in the next subsection.

It appears from the results in Table 2 that weighting in these networks actually
causes a decrease in overall degree centralization. The reason for this is apparently that
the nodes with the highest degree are not the ones whose degree increases as a result of
weighting. This result has some interesting implications. For example, consider any of
the three representations of the author network. It appears that the scientists that work
with the greatest number of other scientists are less likely to work with the same people

multiple times. If the effect of weighting had been to increase overall centralization, the

% National Aeronautics and Space Administration, “Data Set Power Search,” Planetary Data System,
<http://starbrite.jpl.nasa.gov/pds/power.jsp>, accessed on March 6, 2006.
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result simply would have reinforced the centralization of the network. Given the results
that we found, though, it appears that ignoring the weighted edges in the network leads to
an underestimate of the activity of nodes that interact frequently with each other (eg.
authors that have worked together on multiple datasets).

Watts (1999) suggests that the small-world character of the network of film actors
results, at least in part, from the existence of “linchpins” that span genres, eras, or
countries. Similar linchpins working across planetary science disciplines probably play
an important role in the PDS network (and in the planetary science community more
generally) as well. Furthermore, on a purely statistical basis, those authors that work
with a greater number of other authors could be more likely to fill this role. If this is the
case, it actually might be appropriate to overvalue those nodes that are weakly connected
to many nodes. On the other hand, it is possible that a linchpin author that works across
disciplines collaborates only with one other author in each discipline and might do so on
multiple occasions. Thus, there is unlikely to be a direct general relationship between
weighting and the existence of linchpins, so it still is important to consider the effect of
weighting on network centralization.

Still, although degree centrality decreases with weighting, the same does not seem
to be true for eigenvector centrality. In fact, the apparent effect here is that the centrality
actually increases for all of the networks except that of authors connected by datasets
(though the increase is nearly negligible for the network of authors connected by PDS
nodes). However, as discussed above, because the eigenvector centrality is greater than
100 percent for two of the networks, we are skeptical about the value of this metric.
Given this and the lack of effect of weighting on closeness and betweenness centrality,
we focus on degree centrality to comment on the overall effect of weighting on a
network.

In an effort to quantify the effect of weighting on the structure of the network, we
propose a new metric, W, weighting extent:

W = log( CD,weighted ] , (1)

D ,unweighted

where Cp, yeighea 15 the weighted degree centrality, and Cp, unweigheed 15 the unweighted

degree centrality. In the case that W = 0, weighting has no effect on the centrality of the
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network. Table 3 shows the weighting extent for each of the six representations of the

PDS network. Note that #/ < 0 in all cases presented here.

Table 3. Weighting extent, W, for each of the six representations of the

PDS network.
Type of Node Network Weighting Extent
PDS Modes -0.29%5
Authors as Nodes  |Instrument Hosts -0.7 4k
Data Sets 0672
PDS Modes -0.260
Events as Nodes  |(Instrument Hosts -0.647
Data Sets -1.140

We propose this new metric with full awareness of its limitations. It implies a net
total effect on the network based on just one measure of centrality. Therefore, the
robustness of this metric will need to be tested against other networks. Furthermore, even
with such testing, it is important (as with all network metrics) that the value of W be
considered in the context of the specific network being analyzed. Still, this metric does
capture the extent to which weighting affects the network, at least in terms of degree and

centralization.

5.2. The “Best Centers” in the Planetary Data System

In this subsection, we present our analysis of the overall “best centers” in the
Planetary Data System. The first step in this process was to calculate the most central
actors in each of the 12 networks according to each of the four centrality measures. From
each of these 48 calculations, we recorded those actors with the top two centrality
scores.” This was an objective process based on the numerical results for each network.

Selecting the overall best centers from this long list of actors, however, was a bit
more difficult. To do this, we simply looked through the resulting list for each network
and picked the actors that most ranked among the most central according to more than
one metric. In doing this, we gave less consideration to those measures that were likely

to be invalid (e.g. closeness centrality for an unconnected network or eigenvector

7 Note that this is distinct from selecting the top two. If there were 10 actors with the highest score and 10
with the second highest score, then a total of 20 actors were selected.
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centrality for a weighted network). When a clear single best center emerged, as it did for
the information network of datasets connected by authors, we chose that actor. If there
was a close second (or third or fourth), we chose a few overall best centers but ranked
them against each other according to the same procedure. Although it would be possible
to derive a systematic algorithm to pick the best centers, the extent to which certain
metrics are suppressed still would be somewhat subjective. Therefore, even with such an
algorithm, the chosen centers are not necessarily the only possible centers. Nevertheless,
the centers presented here are, at least within some small error, highly central to the entire

PDS network.

5.2.1. Information and Technological Centers

The overall best center for the information network of datasets comes from the
Mars Exploration Rover (MER) mission. This data set, labeled MER1-M-MI-5-
MOSAIC-OPS-V1.0 in the PDS database, consists of microscopic imager mosaic images.
MERI refers to the instrument host, in this case one of the Mars Exploration Rovers,
Opportunity, which was sent to a location on Mars known as Meridiani Planum. (MER2
refers to the other rover, Spirit.)® It is not surprising that the most central data set would
be one containing photographic images of one of the most popular planetary missions
currently in progress. Similarly, the most central instrument host in the network is one of
the Voyager spacecraft. The identical Voyager 1 and 2 spacecraft together are the
longest-running spacecraft mission in the history of planetary science and, so, have sent
an enormous amount of data back to Earth. The second and third best centers in this
network are simply two catch-all instrument hosts that refer to “Various Ground-based

Telescopes” and “Public Literature.”

¥ National Aeronautics and Space Administration, “Host Information,” Planetary Data System,
<http://starbrite.jpl.nasa.gov/pds/viewHostProfile.jsp?INSTRUMENT HOST ID=MERI1>, accessed on
May 14, 2006.
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Table 4. Overall best centers for the information and technological representations of the PDS network.
Overall Best Centers - Information and Technological
PDS Nodes Instrument Hosts Data Sets
=mall_Bodies Soyager 2 MERT-M-MI-5-MOSAIC-0F 2-41 .0
Planetary Atmospheres | Ground-Based Telescopes
Fublic Literature

The best centers of the “technological” PDS node network is especially
interesting because it provides a useful graphical representation, Figure 9, for comparison

with the notional PDS architecture shown in Figure 1. According to the notional

Flanetary_Rings

Irnaging

Flanetary_Atmospheres

Small_Bodies

Flanetarny_Flasma_Interactions

MNavigation_Ancillary_Information_Facility

Geosciences

Figure 9. The network of PDS nodes connected by authors as edges. The two best centers of this
network are Small Bodies and Planetary Atmospheres, respectively.

architecture, the network is a star shape, and all of the nodes are equally important. In the
network in Figure 9, however, it is clear that Small Bodies and Planetary Atmospheres
form the core of the system in terms of usage for the uploading of datasets, and the other
nodes are largely peripheral. When we contacted scientists involved in the PDS before
we began our data collection and analysis, we found that the Small Bodies Node was the
most organized and able to provide us with information. Therefore, it was not a surprise

that this turned out to be the most central of the nodes in the network.
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5.2.2. What is Your Szego Number?

Unlike the networks of events as nodes, the “social” networks all have the same
type of node — the authors. Therefore, it is possible to select overall best centers not just
for each of the three social network representations but also for the entire PDS network.
The results that we obtained, summarized in Table 5, indicate that Karoly Szego of
KFKI, the home of the Hungarian Academy of Sciences, is the Erdds of the Planetary
Data System. (It is interesting to note that Szego and Erdds are compatriots. Is it
common for Hungarians to be at the center of scientific coauthorship networks?) Szego
seems to be involved in the broader space community, as he has served on the committee
of the International Conference on Low-Cost Planetary Missions held by the International
Academy of Astronautics (IAA).” He is also the editor of a volume entitled, The
Environmental Model of Mars, which contains 22 essays from the proceedings of the
second Colloquium of the Committee on Space Research (COSPAR)."

Table 5. Overall best centers for the social representations of the PDS network. The last column lists the
two authors that appear most in the centrality measures.

Overall Best Centers - Authors
By PDS Nodes By Instrument Hosts By Data Sets Owverall
T. £ Martin . Meese K. Szego K. Szego
F. hdehlman L. =. Elson J. T. Gosling J. T. Gosling
J. R. Spencer . H. Acton F. F. Beebe
B.W. Semenow

Apparently, though, Szego does not have any particular role in the management of
the PDS, which makes sense since he is not American. However, some of the other top
centers listed in Table 5 are actively involved. For example, Carol Neese, one of our
primary PDS contacts, is the coordinator of the Asteroids subnode within the Small
Bodies Node. Reta Beebe, another of our contacts, appears twice on the PDS
organization chart, which is shown in Figure 10. In addition, as can be seen in the

organization chart, Charles Acton is the manager of the NAIF node. Still, none of the

? “First Announcement: Fifth IAA International Conference on Low-Cost Planetary Missions,”
euSpaceRef.com, <http://eu.spaceref.com/news/viewpr.html?pid=9358>, accessed on May 15, 2006.
1" “The Environmental Model of Mars,” Elsevier, <http://www.elsevier.com/wps/find/
bookdescription.librarians/28785/description#description>, accessed on May 15, 2006.
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three best centers in the network of authors connected by PDS node actually appear in the
organization chart. Nevertheless, there does seem to be some (though admittedly

imperfect) relationship between centrality in the network and management of the PDS.

MAZA HQ

-
W, Knogp? (PE} NASA

5. Saunders (PS) FoswG
|
I - T 1
Managemant Project Manager Project Scientst
Coungd E. Grayzeck R. Beabe

FropciAdminsizter| | | '

v.Gant ||, RamoSclense |

Project Secratary R.Smpson |

J. Aouinzan ' |
L

[ I I I I I I |
Enginnenng Node | | Almaspneres Node | | Gaossiences Node maging Node Mavigation and Planatary Plasma Rings Node Smal Sodies Moge
D. Crichton R. Bezbe R Aniidson L Gaodls Ancllary Infarmation | | Inferactians (PRI) M. Showalter M. AHzam
Facility [MAIF) Nods Node
C. Acion R. Walker

Figure 10. Organization chart of the Planetary Data System.

Figure courtesy of NASA. Source: National Aeronautics and Space Administration, Planetary Data System (PDS)
Project Organization, <http://pds.jpl.nasa.gov/tools/pds_org.pdf>, accessed on February 28, 2006.

6. Conclusions
6.1.  General Observations...
6.1.1. ...About the Planetary Data System

In this study, we have analyzed the collaboration patterns of scientists that help to
generate and upload data onto the Planetary Data System. We found that these scientists
form tight-knit communities around instrument hosts rather than around the notional PDS
nodes. In addition, the measures of centrality, combined with our own experiences
interacting with the node managers, suggest that the Small Bodies Node is well-run and
important in connecting the PDS nodes together. This suggests that scientists that study
small bodies (ie. asteroids, comets, and dust) are likely to participate in the provision of
data to other PDS nodes as well. Still, it is difficult to draw robust and generalized
conclusions about the system because our analysis includes only uploaded data (without
incorporating data access patterns) at a snapshot in time. To make a meaningful
statement about the value of the system to the scientific community and to the general
public, these aspects of the system would have to be considered as well. Still, this project

provides the basis for further study of the PDS.
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Furthermore, it is important to note that the Planetary Data System represents
only a small cross-section of the entire planetary science community. Although NASA is
attempting to archive all planetary data on this system, a great deal of work still needs to
be done. Moreover, many of the datasets are in the system are not appropriately cited,
which makes it difficult or impossible to know who the authors are. Also, there are, of
course, a great deal more than 439 planetary scientists in the world. Nevertheless, data
do exist on broader segments of the planetary science community, and we will return to

this yet-unexploited opportunity in subsection on future work.

6.1.2. ...About the Science of Networks

This study’s primary conclusions about the analysis of networks relate to the
shortcomings in the metrics currently used to compare different networks at a general
level. Many of these limitations arise from the need to discard important information to
make simple and broad comparisons between networks. Examples of this include the
weighting of edges in affiliation networks according to the number (or strength) of
interactions and the use of the Pearson degree correlation without accompanying scatter-
plots.

The weighting of edges is important because it carries information about the
frequency and strength of the connections between actors or events in the network. This
weighting, however, is often ignored in an attempt to capture the essence of social
interactions in a generalizable way. This is done for good reason — many of the
commonly used metrics become essentially meaningless when weighting is included.
With the result that weighting can decrease centralization, at least in the PDS network,
we suggest a metric to assess the extent to which weighting affects degree and
centralization.

The degree correlations of many of the network representations of the PDS
network are close to 1. This occurs because of the existence of large symmetric clusters
in which all nodes having higher than average degree. This result suggests that the
Pearson correlation coefficient, r, can produced misleading results about the nature of the
network. Therefore, this metric should be used cautiously and only in conjunction with

degree-versus-degree scatter-plots to avoid reporting meaningless values of r.
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The results of our community structure analysis support the use of the Newman-
Girvan algorithm to find tightly knit communities within affiliation networks. The
algorithm’s results for the social network of authors connected by datasets matched well
to the communities defined by the instrument hosts on which the authors worked. Nodes
with high betweenness correspond almost exactly to authors that worked on multiple
instrument hosts.

Finally, our results indicate that the choice of network representation affects the
magnitudes of most of the common metrics used to evaluate networks. To mitigate the
effect of weighting, we suggest the use of certain metrics that incorporate this
phenomenon. Examples include Marchiori and Latora’s connectivity length and the
weighting extent proposed in this paper. Even with weighting taken into account, though,
the choice of which system components map to nodes and which to edges still affects the
results of the network analysis. This stresses the importance of maintaining network
context — one should think carefully about the questions of interest and try to choose the

appropriate network representation.

6.2. Future Work
6.2.1. Analysis of a Subject Area Network, including Network Growth

One possibility for future work is to study the sub-network within one of the PDS
nodes to determine centrality and community structure within a subfield. Another
interesting aspect of such a study would be to determine if these sub-networks are more
or less connected than the overall network. In addition, with narrower scope of the
network, it might be more straightforward to examine the evolution and growth of the
network over time. This could be done by incorporating the dates on which datasets were

uploaded into the system (the PDS reports release dates for each of the datasets).

6.2.2. PDS Data Access Statistics

During our initial research, we found that the PDS node managers report
download usage statistics to the central PDS office. We requested a copy of these
statistics from the central office, but we had trouble actually getting the data. Some of

the people that we contacted told us that the statistics did not exist (although we already
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had the data for the Small Bodies Node — yet another indication of the coordination
within that node). Others referred us to the individual node managers, who, in turn, sent
us back to the central office. Nevertheless, we eventually were able to obtain this
information for four of the nodes. The problem with these statistics, though, is that
NASA collects them only at the PDS-node level (not for individual datasets or instrument
hosts), and the only information available about each user is the hostname of the
computer used to access the data. Although it might be possible, at least technically, to
collect more detailed information about the data being accessed, the identities of the
scientists necessarily cannot be known. Still, some limited insight might be made from
the access of PDS nodes by various institutions.

Another approach to analyzing the usage of PDS data would be to examine papers
published using these data. The PDS does provide scientists with a standard citation
format for these data. The format, however, has been in use only since 2003, and even
since then, it has not been used consistently. Still, a search through Web of Science

might provide some papers whose collaboration network could be analyzed.

6.2.3. Social Network Analysis of a Major Planetary Science Conference

Richard P. Binzel, one of MIT’s own nodes in the PDS collaboration network, has
suggested that it might be useful and interesting to conduct a similar study using the
papers submitted to a major planetary science conference. As discussed previously, the
PDS provides only a limited portion of the entire planetary science community.
According to Professor Binzel, however, the Annual Meeting of the American
Astronomical Society’s (AAS’s) Division for Planetary Sciences (DPS) would provide a
much larger and more representative sample. Furthermore, he believes that the subject
areas of the PDS nodes map well to the disciplines around which DPS meetings are
organized.!" Therefore, it likely would be feasible not only to repeat the analysis for the
DPS data but also to compare results to those obtained for the PDS. This analysis could
include an assessment of whether the community structure and centrality discussed in this

paper are general phenomena or just unique to the PDS.

"' Richard P. Binzel, personal communication, May 6, 2006.
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6.2.4. Funding and Political Support of Planetary Spacecraft

Our last and least-defined suggestion for future work is to gather data of some sort
on the funding and political support for missions and/or for the subject areas of the PDS
nodes. The intent would be to determine the dynamics between scientists, engineers, and
policymakers in the lifecycle of planetary missions. The intent would be that the results
would relate somehow to the conclustions presented in this paper. Such a study might
help to understand the origins of political support for planetary missions and for the PDS.
The data would be difficult to obtain, but the results of such a study could have the

potential to break new ground in science policy and space policy in the United States.
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