
1

Mixed Trees and Layers
• Layered human organizations are locally relatively

horizontal and globally tree structured. Locally they form
a team, and rely on leaders to form interconnections
resulting in tree structures of clans (see Watts, Chapter
9, also in Dodd, Watts and Sabel’s paper, although they
come at it from a very different perspective)

2

Characeristics of Human
Layered Organizations

• Members of a given layer can have multiple
parents or can relatively easily switch parents at
the layer above them

• Cooperation and trust are important attributes
• Members of a given layer can interact readily

with other members at the same layer
• I believe that middle managers in such

organizations recognize that a significant part of
their job is increasing trust between their team
members and members of other teams with
whom they will need to work at some point

3

Overlays
• Large partnerships (e.g., consulting firms) are

often layered, and use project teams that may
be best modeled as tree structures which are
overlayed on the base structure

• Matrix organizations (two bosses) may be
viewed as overlays as well. At MIT we have
departments as well as centers, and most faculty
members have a department head and a center
director as ‘bosses.’

4

Complexity and Flexibility

5

Complexity and Flexibility:
Structural complexity

• Kolmogorov defined the (structural) complexity of a function as the
length of its shortest description. This gives a lower bound to the
complexity of implementations of the function

• The shortest description is, however, hard to determine
• Abstractions in an implementation permit you to reduce the length of

a description (recall the matrix example in Herb Simon’s chapter)
• There is a trade-off between a long description in an implementation

and one that has a high number of layers of abstractions, each of
which is relatively short

• The intricacy (related to messiness) of the interconnection pattern in
a system clearly adds to the complexity

• The total number of nodes and interconnections also clearly adds to
the complexity of an implementation

6

Structural complexity of an
implementation

• “Spaghetti stack” – a messy pattern of interconnections
of components – people sometimes use graph theory to
measure the messiness of the interconnection pattern –
systems or software engineering design methodology
tends to reduce the messiness of the interconnection
pattern –this is one of these methodologies’ biggest
advantages

• Number of components -clearly related to complexity
• Number of interconnections -also clearly related
• In a hierarchy, the number of levels or layers is related to

complexity (in a system using layers of abstractions
which reduce the number of components and their
interconnections, the depth of the hierarchy, if large,
clearly adds to the complexity)

7

My approach to structural
complexity in the analysis below

• I assume that there is regularity in the
interconnections structure in a generic structure,
such as a tree structure . Thus messiness is not
an issue

• I assume that the number of layers is not large,
so accounting for the increased complexity for a
large number of layers is not much of an issue

• I assume that the number of interconnections is
larger than the number of nodes

• Thus I simply count the number of edges or
interconnections in a system, and call that the
structural complexity of the generic system or
organization

8

Examples of Flexibility
(D-design, R-redesign, O-operation, F-function, P-
performance)

• Using a tuner in a radio to switch stations – O, F
• Changing gears in a car or bicycle – O, P
• Adding rules in spreadsheets – O, R, F
• Creating a new layer of software on top of or in between

existing layers – D, R, F
• Switching roads to avoid congestion – O, P
• Adding connections in infrastructures to increase

flexibility (and robustness) – R, P
• Switching roles in NE Patriots’ defensive positions – O,

F, P

9

What is Flexibility?
• A flexible system presents alternatives, usually many

alternatives, to its function, performance or other ilities
• Some of these alternatives are obvious in the system’s

interface, but most are not
• A flexible system also makes it easy to make certain

classes of modifications in the system during design,
redesign or operation of the system

• Not all modifications by an external designer are easily
made in a flexible system (largely because these
modifications may not rely on flexible parts of the
system)

10

Continuous Notions of Flexibility
• Flexibility is assumed here to be a property of discrete

systems in the process of making alternative choices
• English also uses the term flexibility in continuous

systems, such as a flexible bow
• One may have a flexible body permitting one to make a

large variety of moves and take on a large variety of
positions or states

• One could model or simulate these large number of
relatively continuous positions with a discrete system,
but we shall choose to ignore this possibility, and
continue to emphasize flexibility in relatively clear-cut
discrete situations

11

What is Flexibility -2
• Flexibility is related to the relative ease of

implementing classes of changes in a system’s
function. It does not mean that all changes must
be easy to implement. Big changes will usually
not be easy. Some apparently simple changes
will not be anticipated in the original design, and
may not be easy to introduce (Social Security
example).

• I define the flexibility of a system to be
log(paths/nodes)

where paths is the number of paths in the
system, starting with a root node and ending in
leaf nodes, but counting cycles just once

12

Flexibility in relation to other goals
and characteristics of systems

• Increased use of flexibility to modify systems usually
increases complexity

• The architecture of a system will play a key role in
determining the relationship between flexibility and
complexity

• Flexibility may not be free – there is usually some loss in
performance.

• Flexibility may be used to get around failing nodes or
connections in a (networked) system, thus obtaining
some robustness or resilience

• Due to such relationships, flexibility is, for me, the queen
of the ilities

13

Implementing Flexibility
• Flexibility is, for me, a relatively implementation-oriented

ility
• Flexibility is related to having discrete alternatives in the

system or adding such alternatives in a redesign
• Adaptability is, to me, largely having continuous

alternatives or changes, as in a feedback system (e.g.,
use of a thermostat is related to adaptability, not
flexibility)

• Switches (and routers) are ways of building-in
alternatives

• IF statements in software are switches
• Interpreters, which may accept an infinite number of

different inputs (they have a loop in addition to routers),
provide great flexibility

• Uncertainty is less of an issue in software if one can rely
on interpreters to handle a huge number of future states

14

Why are paths important in the
definition of flexibility?

• Surely, one can add or modify function by
adding new nodes and connecting them to the
existing system. In business one does this when
merging firms. We, unfortunately, tend to think
this is easier than it often turns out to be.

• Often it is possible to make changes by
connecting nodes that were previously not
connected, and make some small changes
within the pair of nodes. This is not possible in a
pure tree structure, although it is often done, but
it then usually adds a lot to the structural
complexity of the resulting (increasingly messy)
system.

15

Team structures

• Team with five members or nodes– a fully
connected graph – ten interconnections or
edges

16

Complexity and Flexibility of
Teams/Families

• The number of paths in a team of n nodes is
O(n!) which is huge, but the complexity is O(n2).
Thus n needs to be small for human
teams/families, due to George-Miller-type
restrictions. Clans can be larger, but they too are
limited in size

17

Tree Structures

• A tree with 8 nodes and 7 edges, 5 paths
from root node to bottom nodes, 3 levels

18

Complexity and Flexibility of Tree
Structures

• Complexity of a tree structure is O(n), but
the number of paths is also O(n), since the
number of paths is equal to the number of
bottom (leaf) nodes. The flexibility
measure is negative. Essentially pure tree
structures are inflexible. Increasing the
flexibility of a pure tree by adding edges or
interconnections will increase flexibility,
but at a potentially significant increase in
complexity.

19

Flexibility and Performance – Tree
structured systems

• A balanced binary tree has 2d nodes at depth d (in a balanced tree
nearly all leaf or bottom nodes are at the same depth).

• The number of paths from top to bottom is also 2d

• The number of switches that are triggered in each node in a path is
log (base 2) of the total number of paths – that is, d

• The loss in performance due to the switches is usually bounded by a
constant multiple of the number of switches triggered, or log (base
2) of the number of paths in a balanced tree

• An alternative to switching is to have 2d direct connections between
the top and bottom, which is usually difficult to achieve due to fan-
out problems, but this alternative eliminates much of the
performance loss due to switching. Direct connections may also lose
the potential explanatory power of a hierarchical architecture

• A key weakness of a hierarchical tree-structure architecture is that
redesigns may add greatly to the complexity of the system and may
prevent additional changes after some point. In other words, pure
tree structured systems (often the key intermediate result of
systems engineering or software engineering) are often overly
complex and inflexible after some redesign

Layered Hierarchies
• Layered structure with three layers – no purely horizontal

interconnections – may connect to any or even all nodes in layer
immediately above or below

Layer 1

Layer 2

Layer 3

20

21

Complexity and Flexibility of
Layered Structures

• Assume a layered structure with no horizontal
interconnections, with k layers, each of n/k
nodes. The number of paths will be O((n/k)k), far
higher than a tree structure with similar number
of nodes, except for k=1. The complexity will be
quadratic in n, thus too high for human
organizations (use hybrid organization instead)
and for some technical systems (use routers in
some cases). This level of complexity presents
no problem in pure mathematics

22

Flexibility and Performance –
Layered Systems

• A hierarchy of routers or interpreters is one set of
examples of a layered system

• Layered systems are related to levels of abstractions,
and have relatively easy explanations in comparison to
the overall system

• Performance suffers somewhat due to the cost of getting
through each layer – people who don’t like a layered
approach tend to emphasize this point

• If one is careful, one may permit the violation of an
abstraction by allowing direct paths through one or more
layers in order to increase performance in certain cases

23

Hybrid Hierarchy or Mixed Trees
and Layers

• Layered human organizations are locally relatively
horizontal and globally tree structured. Locally they form
a team, and rely on leaders to form interconnections
resulting in tree structures of clans (see Watts, Chapter 9
for a similar diagram, but different analysis and different
detailed structure. Also Dodd, Watts and Sabel)

24

Analysis of a hybrid or mixed trees
and layers

• What is the flexibility of a mixed tree and layer system?
– Assume teams with t members each, depth d. Can you

determine what the number of paths is for a balanced mixed
tree and layer? It will be equal to or higher than O(n2), but
usually not as high as O(n3)

• What is its structural complexity?
– Answer: O(t n), more complex than a tree, but bearable when t is

relatively small
• Thus a mixed tree and layer reduces complexity to

something akin to a tree, albeit higher, but flexibility is
quite a bit higher than that of a tree

• In contrast to some network models, this hybrid
architecture is designed by humans and is relatively
controlled, rather than ad hoc or random

25

Summary of Complexity and Flexibility Analysis

Architecture Complexity Number of
paths

Family/team O(n2) O(n!)

Tree structure O(n) O(n)

Layered
structure

O(n2) O(nd)

Mixed/hybrid
Tree and Layer

O(n), but higher
than tree
structure

O(n2+)

26

Analysis of layered systems that
use routers

• Complexity is O(n log(n)) with routers
• The number of paths is still O((n/k)k) for k layers

(with no horizontal connections)
• Efficiency is lower since one has to go through a

router, and routers may get congested with
requests. Use multiple routers for robustness
and some reduction in congestion

• This makes computer/communication hardware
architectures a potentially challenging problem

27

Complexity and Flexibility of
Networks

• General network structures take many forms.
However, a grid type of network (nearest
neighbors are connected) will have the number
of paths that is exponential in the number of
nodes. Consider adding just one new node and
connect it to its nearest neighbors, and see that
the number of paths is at least doubled. The
complexity is O(n), which is good. However,
such networks lend themselves to highly
distributed control as well as cycles (and thus
feedback), and this makes it often relatively
difficult to analyze or control the behavior of the
system

28

Laterality
• We can distinguish parent/child vertical

connections from ones that are more horizontal
or lateral

• We define laterality to be the ratio of the number
of lateral connections to the number of vertical
connections

• The higher the laterality the more paths we are
likely to have and thus the greater the flexibility
of the system (and thus the greater likelihood of
robustness)

29

Flexibility of Linearly Structured
Systems

• Consider the number of ways of assigning
offices on a given floor, where the number of
offices to be assigned varies from 0 to k, k≤n,
and different groups require m contiguous
spaces, m≤k

• Claim: the number of alternate assignments is
2n, the number of subsets of n

• Hence doubling n yields a squaring of the
number of alternatives

30

Staging Alternatives
• The office assignment problem is related to the number

of alternative assignments of groupings in a staged
system (e.g., the number of satellites to be placed in
orbit in stages, the number of floors in a garage to be
added in stages)

• In the garage example, one may need to add
performance up-front (to the beams) so that one has the
option to add floors at a later point

• The B52 can be viewed as an unexpected example of
staging. Its performance was higher than was actually
needed. Thus in later stages of its life new equipment
could be added to the plane that lowered the maximum
height performance, but the height performance was still
above the minimum needed to avoid enemy fire, and the
new functions thus obtained were extremely useful

31

Flexibility and Routers
• Routers rely on tags or addresses to make the switch.

As a result, the number of alternatives tends to be higher
than in a (binary) switch.

• Routers play key roles in infrastructures as well as in
software systems

• Language interpreters are often implemented as routers,
but include a loop. This is about as close as software
normally gets to having feedback

• Layered software/hardware systems can be considered
as (layered) hierarchies of routers/interpreters

• New layered abstractions greatly increase the system’s
flexibility and expressive power

• In biology, cells, bilateral architectures, limbs, and the
neo-cortex all provide such abstractions (viz. Kirschner
and Gerhart - they don’t use this terminology, but should)

32

Flexibility, networks and
Robustness

• Networks tend to have very large number of possible
paths from a starting node to end nodes, thus their
flexibility is very high

• The number of paths is often so high that it is relatively
easy to circumvent a failing node or connection, thus
obtaining a measure of robustness

• Interestingly, the ease of changing internally (flexibility)
allows one to successfully resist internal or
environmental challenge or change (robustness)

• Moreover, analyses of network flows may lead to the
identification of the few additional connections that would
result in an even more flexible and robust network
design

33

Flexibility and Rates of Change

• Very slowly changing systems do not need to be
very flexible – one may change these systems
slowly and pay a penalty in complexity

• Systems that are the first implementation of their
type need flexibility – second implementations
may pay more attention to performance

34

Measuring Flexibility

• Our emphasis on paths makes the number
of paths a natural component of the
measure of flexibility

• By itself such a measure is not very useful.
It needs to be related to other system
measures and characteristics, such as
(structural) complexity and (generic)
architectures

• It’s about the relationships, stupid

35

Universality
• Interpreters (e.g., instruction execution in a

microprocessor, language interpreters) can
execute (or simulate) any well-defined
procedure (Church-Turing thesis)

• All it takes is a router, a looping capability, a
read/write capability and unbounded time and
storage

• This property of information systems may be a
reason why uncertainty is less of an issue in
software systems – one expects to handle any
future state (ignoring efficiency considerations)

• Universality is the ultimate in flexibility

36

Layering as an Algebraic
Concept

• Trees and layered systems are
describable using combinatorics,
especially graph theory

• Layered systems are, however, probably
best described using abstract algebra

• Each layer is an abstraction of the layer
immediately below it, and a specialization
of the layer immediately above it

37

The Telephone Network as
Example of Layered Architecture

• The AT&T system in the US (certainly prior to 1983) was
basically composed of three layers (each using a
different architecture)
– Local switching loops (routers) at the bottom of the hierarchy
– Regional interconnections in the middle
– National network at the top layer

• The capacity of the US system was 10 billion phones
given 10 digit phone numbers

• The system was scalable, flexible and robust
• Unfortunately, the rate of change of technology was kept

low, partly due to AT&T’s long term investment in copper

38

The Landline Telephone Network
as a Commutative Diagram

Three layered model of land-line telephone
system

39

Landline Telephone Architecture

• Lowest layer (10,000 lines) – uses a large switch
or router

• Middle or regional layer (1,000) – might use a
team structure, that is a nearly fully connected
graph of a few nodes, each a switch of the
architecture above

• Upper layer (1,000 area codes) – uses a
national network between regions with central
offices that switch potentially thousands of ‘calls’
as if they were a liquid, for robustness and
efficiency reasons

40

Abstractions in Algebra:
Simple Algebraic Examples

• Consider the (infinite) set of integers, Z
• The rational numbers, R, are an abstraction of Z
• Each integer has an infinite number of rationals

for which it acts as numerator or denominator –
no problem having so many implicit connections

• The integers modulo 3 (i.e., 0, 1, 2) are a
specialization of Z

• Polynomials in x with integer coefficients, Pz(x)
are an abstraction of Z

• Polynomials in y whose coefficients are in Pz(x),
Pz(x,y) is an abstraction of Pz(x)

41

Integration using algebraic
abstractions

• Consider ∫f(x) dx, such as ∫x ex dx = x ex – ex

• Suppose f(x) is in an abstraction (extension) of
the rational functions in x, say F(x)

• (Liouville, Ritt, Risch Theorem) The integral of
f(x), if it is expressible in terms of the usual
functions in the calculus (exponentials, logs,
roots of such functions), then
∫f(x) dx = A(x) + ∑ci log(Bi(x))
, where ci are constants, and A and the Bi are
also in F(x)

42

Simple Examples
• ∫e x2dx
• The integrand is in R(x, ex2). In this special case we know that there are no

log terms, and that the form of the integral is
• ∫e x2dx = A(x) e x2 , where A(x) is in R(x), that is A is in the immediately

lower field
• Differentiate both sides

e x2 = A’(x) e x2 + 2 x A(x) e x2 , divide both sides by e x2

1= A’ + 2x A
If A is a rational function in x, could it have a nontrivial denominator? No, since A’

would have a denominator of higher order and the other terms would not cancel
it.

Thus A must be a polynomial in x of degree n, say
What could n be?
0 (n-1) (n+1) the degrees of the three terms on the two sides of the equation
Thus, 0 = n+1, or n= -1, but that is a contradiction since A would then have a non-

trivial denominator
Hence the integral is not expressible in closed form
This proof used to be dozens of pages long prior to 1970

43

Simple integration examples
• ∫x e x2dx = A(x) e x2 , where A(x) is in R(x)
• Differentiate both sides and divide by e x2

• X = A’(x) + 2 x A(x)
• As before, A has no nontrivial denominator
• Say A is a polynomial of degree n in x
• 1 (n-1) (n+1) the degrees of the three terms above
• So n=0, A(x) = a, a constant
• X = 0 + 2 x a
• Solve for a
• a= 1/2
• ∫x e x2dx = ½ e x2

44

Abstraction and Problem Solving

• A key value of abstractions is that they simplify a
problem by hiding layers (not just modules) of detail in its
solution

• A possible approach to problem solving (in contrast to
hierarchical decomposition) is “repeated abstraction”

• Also instead of starting at the bottom (or top) one may
want to start in the middle (“middle-out”) and develop
abstractions (going up) and specializations (going down)
from there

• Such an approach may be best when one is exploring a
new problem domain. Top-down, in order to be
successful, usually assumes you already know what the
specs are or ought to be

• Just as there is no unique decomposition of a given
problem, there is no unique abstraction

45

Arguments against abstractions
and layering

• It is not clear how to create a “good” abstraction. The
mathematician who invented matrices circa 1860 thought
that there would be hardly any use for them – it is thus
even hard to tell when you have a good abstraction

• Similarly, it is not clear how to create a good
decomposition, but it is relatively easier to create some
decomposition

• Abstractions leading to higher layers will likely lead to
some, possibly minimal, loss of performance

• In CS, this loss of performance has been used against
most new abstractions, such as high level languages
(e.g., FORTRAN) and VLSI design languages

• New computer architectures and improved speeds have
often vitiated such arguments

46

Data Abstraction

• See Chapter 2 of Abelson and Sussman’s
6.001 text

• Rational number arithmetic procedures (+,
*) are based on lower layer procedures for
integer arithmetic

• Polynomial arithmetic in one variable with
rational number coefficients is based on
rational number arithmetic procedures

• Etc.

	Mixed Trees and Layers
	Characeristics of Human Layered Organizations
	Overlays
	Complexity and Flexibility:Structural complexity
	Structural complexity of an implementation
	My approach to structural complexity in the analysis below
	Examples of Flexibility
	What is Flexibility?
	Continuous Notions of Flexibility
	What is Flexibility -2
	Flexibility in relation to other goals and characteristics of systems
	Implementing Flexibility
	Why are paths important in the definition of flexibility?
	Complexity and Flexibility of Teams/Families
	Complexity and Flexibility of Tree Structures
	Flexibility and Performance – Tree structured systems
	Complexity and Flexibility of Layered Structures
	Flexibility and Performance – Layered Systems
	Analysis of a hybrid or mixed trees and layers
	Analysis of layered systems that use routers
	Complexity and Flexibility of Networks
	Laterality
	Flexibility of Linearly Structured Systems
	Staging Alternatives
	Flexibility and Routers
	Flexibility, networks and Robustness
	Flexibility and Rates of Change
	Measuring Flexibility
	Universality
	Layering as an Algebraic Concept
	Landline Telephone Architecture
	Abstractions in Algebra:Simple Algebraic Examples
	Integration using algebraic abstractions
	Simple Examples
	Simple integration examples
	Abstraction and Problem Solving
	Arguments against abstractions and layering
	Data Abstraction

