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Lecture 6: Quantitative Aspects Of 
Networks III: Outline

• Network Analysis Terminology notated
• Connectivity
• Some Social Network Concepts-intuition and calculation

• transitivity (clustering)
• centrality

• degree, closeness, betweenness, information, eigenvector
• prestige and acquaintance
• degree distributions

• skew (and non-skew) distributions
• fitting power laws to observed data
• the normality of power laws
• truncation
• Structural implications and growth assumptions

• Examples of some metrics from broad Assign. # 3 “systems”
• Project Discussion
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Network Analysis Terminology -notated
• node (vertex), link (edge) CM2, 
• size, sparseness, metrics CM2
• degree, average degree, degree 

sequence DW4
• directed, simple DW4
• geodesic, path length, graph  

diameter DW4
• transitivity (clustering),

connectivity, reciprocity CM6
• centrality (degree, closeness, 

betweenness, information, 
eigenvector) CM6

• prestige, acquaintance CM6
• ideal graphs (star, line, circle, 

team) CM6
• degree distribution, power laws, 

exponents, truncation, CM6

• Models (random, “small world”, 
poisson, preferential attachment)

• constraints, hierarchy, rewiring
• community structure, cliques, 

homophily, assortative mixing, 
degree correlation coefficient

• motifs, coarse- graining
• navigation, search, epidemics and 

cascades
• self-similarity, scale-free, scale-

rich
• dendograms, cladograms and 

relationship strength
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Network Metrics (from lectures 2 and 4)
• n, the number of nodes 
• m, the number of links 
• 2m/n is the average degree <k> as the number of links on a given

node, k, is the degree. 
• m/[(n)(n-1)] or <k>/2(n-1)is the “sparseness” or normalized 

interconnection “density”
• Path length, l
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Connectivity
• Fraction of nodes connected in a network

• Of interest in resilience/robustness which we will cover in a 
later lecture and then an inverse path length definition is useful

• Can also be of interest during network formation or as links are
added to a set of nodes

• Is also of interest in community determination (or 
decomposition) as one tries to arrive at a disconnected set of 
groups by (for example) cutting as few links as possible

• Statistical “percolation” models are often used in network 
formation and destruction studies and then a specific network 
model (for example, random) is applied to calculate 
connectivity.
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Connectivity:
(For the Poisson random graph)

See Newman, M. E. J. "The Structure and Function of Complex Networks." SIAM Review 45, no. 2 (2003): 167–256. Society for Industrial and Applied Mathematics.
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Social Network Analysis 

• Many structural metrics have been invented and used by Social 
Scientists studying social networks over the past 70+ years.

• These are well-covered in Wasserman and Faust –Social 
Network Analysis (1994) The following slides cover a few
selected examples in one area from that book. The purpose is 
to give some feel for the application of such metrics which 
attempt to measure structural properties of direct interest for 
analysis

• We should also note that transitivity (clustering) and almost all 
other metrics discussed in this lecture were familiar to and 
used by social network scientists before the recent upsurge in 
activity over the past 7 years.
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Transitivity or Clustering coefficient, C
• Measures quantitatively the degree to which nodes which each 

have relationships with a common node are likely to have a direct 
relationship.
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Example calculation of transitivity 
coefficients 

This network has one triangle and eight connected triples, and therefore has a 
clustering coefficient,     , of 3 x 1/8 = 3/8 The individual vertices have local 
clustering coefficients, of 1, 1, 1/6, 0 and 0, for a mean value,      = 13/30.

1C
2C

Figure by MIT OCW.

See Newman, M. E. J. "The Structure and Function of Complex Networks." SIAM Review 45, no. 2 (2003): 167–256. Society for Industrial and Applied Mathematics.
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Transitivity or Clustering coefficient,  II

• (Almost) always > than expected from random networks thus 
offering some support for earlier assertions that real networks 
have some  non-random “structure” (more later)
• Thus, assessing transitivity is a quick check whether you 

have a random graph  where C = <k>/n. Indeed the size 
dependence of transitivity can be useful to calculate

• Higher order clusters (groups of n related nodes) also of 
interest but no clean way (yet) to separate lower order and 
higher order tendencies

• In directed graphs, n=2 effects (the proportion of nodes that  
point at each other) can  be of interest and is labeled 
reciprocity.
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Centrality
• Numerous metrics exist in the Social Networks Literature for 

assessing the “centrality” of a social network.
• Centrality metrics attempt to characterize the level of 

“centralization” of control or action on this network 
• One application is to assess how important a given actor (node) 

is in the network (ranking of nodes according to link 
information)

• Another application is to assess overall how much of the control 
of the network is controlled by the “more important” actors

• The relative importance of single channels/links and groups of 
links has also been of interest.

• We will look at a several of the social science defined metrics and 
explore the definitions by looking at “ideal toy graphs”: Team 
(family or full) graphs, Circle (or line) graphs and Star graphs.
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Degree Centrality

• Actor (can be individual, group 
or organization depending on 
what is being studied). The 
actor in the example we will 
use is a “Family”. Most central 
is the node with the most links.

• Group (all actors in network)
• = 1 for a star graph
• = 0 for a circle graph or 

“team”
• = 1/(n-1) for line graph
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Padgett’s Florentine Families:
15th Century Marriage Relations

n1:Acciaiuoli

n4:Bischeri

n15:Strozzi

n5:Castellani

n6:Genori

n7:Guadagni

n8:Lamberteschi

n9:Medici

n11:Peruzzi n12:Pucci

n13:Ridolfi

n14:Salvati

n2:Ablizzi

n16:Tornabuoni

n3:Barbadori

n10:Pazzi
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Florentine Families Centrality Metrics I: 
Degree

Acciaiuoli
Ablizzi
Barbadori
Bischeri
Castellani
Genori
Guadagni
Lamberteschi
Medici
Pazzi
Peruzzi
Pucci
Ridolfi
Salvati
Strozzi
Tornabuoni

Centralization

0.071
0.214
0.143
0.214
0.214
0.071
0.286
0.071
0.429
0.071
0.214

---
0.214
0.143
0.286
0.214

0.257

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
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Closeness Centrality

• Actor
• Closest is shortest

(geodesic) distance from 
other nodes =1 for max 
closeness and 0 for min

• Group
• = 0 for circle graph or full 

network
• = 1 for star graph
• 0.277 for line (7 nodes)
• can estimate several ways 

including dispersion

∑
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Florentine Families Centrality Metrics II 
Closeness

Acciaiuoli
Ablizzi
Barbadori
Bischeri
Castellani
Genori
Guadagni
Lamberteschi
Medici
Pazzi
Peruzzi
Pucci
Ridolfi
Salvati
Strozzi
Tornabuoni

Centralization

0.071
0.214
0.143
0.214
0.214
0.071
0.286
0.071
0.429
0.071
0.214

---
0.214
0.143
0.286
0.214

0.257

0.368
0.483
0.438
0.400
0.389
0.333
0.467
0.326
0.560
0.286
0.368

---
0.500
0.389
0.438
0.483

0.322

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
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Betweeness Centrality I

• Actor
• Power or influence comes 

from being an intermediary 
• z is the number of 

geodesics between two 
points 

• Group
• =1 for star graph
• =0 for circle
• =0.311 for 7 node line
• Tree Hierarchy = xx

]2/)2)(1[(

/)(
)('

−−
=
∑ <

nn

znz
nC kj jkijk

iB

1
)]()([

1
'max'

−

−
= ∑ =

n
nCnC

C
n

i iBB
B



Professor C. Magee, 2006
Page 17

Definition of Hierarchy

• Not covered in ESD Terms and Definitions but..
• Hierarchy: A description of a group of elements (system?) 

where each element is graded or ranked and then arranged in a 
structure that separates elements according to rank which each 
descending rank being in some way subordinate to the next 
higher rank (this leads to a level number or node depth). 
Although hierarchy often describes power or authority 
relationships, it is also used in describing levels of abstraction 
and other system features. Closed and Open hierarchies have 
also been distinguished. 

• Hierarchies can take on a variety of structures ranging from 
Pure layers to pure trees. 
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Florentine Families Centrality Metrics:
Betweeness

Acciaiuoli
Ablizzi
Barbadori
Bischeri
Castellani
Genori
Guadagni
Lamberteschi
Medici
Pazzi
Peruzzi
Pucci
Ridolfi
Salvati
Strozzi
Tornabuoni

Centralization

0.071
0.214
0.143
0.214
0.214
0.071
0.286
0.071
0.429
0.071
0.214

---
0.214
0.143
0.286
0.214

0.257

0.368
0.483
0.438
0.400
0.389
0.333
0.467
0.326
0.560
0.286
0.368

---
0.500
0.389
0.438
0.483

0.322

0.000
0.212
0.093
0.104
0.055
0.000
0.255
0.000
0.522
0.000
0.022

---
0.114
0.143
0.103
0.092

0.437

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
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Padgett’s Florentine Families:
15th Century Marriage Relations

n1:Acciaiuoli

n4:Bischeri

n15:Strozzi

n5:Castellani

n6:Genori

n7:Guadagni

n8:Lamberteschi

n9:Medici

n11:Peruzzi n12:Pucci

n13:Ridolfi

n14:Salvati

n2:Ablizzi

n16:Tornabuoni

n3:Barbadori

n10:Pazzi
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Betweeness Centrality II

• Actor
• Power or influence comes 

from being an intermediary 
• z is the number of 

geodesics between two 
points 

• Group
• =1 for star graph
• =0 for circle
• =0.311 for 7 node line

• Betweeness Centrality has 
been most applied of the 
centrality metrics in Social 
Network Analysis (1994)
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Information Centrality

• Actor
• Estimates the information 

value of the connections 
• shorter distances are better but 

are not the only paths used
• T is the trace, R a row sum 

and c an element in a matrix 
constructed from the 
sociomatrix with information 
content

• Actor indices are proportions 
of total “information” flow 
controlled by a single actor
and sums to 1 in network

• No group index (1997)
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Florentine Families Centrality Metrics

Acciaiuoli
Ablizzi
Barbadori
Bischeri
Castellani
Genori
Guadagni
Lamberteschi
Medici
Pazzi
Peruzzi
Pucci
Ridolfi
Salvati
Strozzi
Tornabuoni

Centralization

0.071
0.214
0.143
0.214
0.214
0.071
0.286
0.071
0.429
0.071
0.214

---
0.214
0.143
0.286
0.214

0.257

0.368
0.483
0.438
0.400
0.389
0.333
0.467
0.326
0.560
0.286
0.368

---
0.500
0.389
0.438
0.483

0.322

0.000
0.212
0.093
0.104
0.055
0.000
0.255
0.000
0.522
0.000
0.022

---
0.114
0.143
0.103
0.092

0.437

0.049
0.074
0.068
0.074
0.070
0.043
0.081
0.043
0.095
0.033
0.069

---
0.080
0.050
0.070
0.080

---

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
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Eigenvector Centrality-UCINET

• UCINET-help, help topics, index (on toolbar), eigenvector centrality 
• Given an adjacency matrix A, the centrality of vertex i (denoted ci), is given by  

ci =aSAijcj where a is a parameter.  The centrality of each vertex is therefore 
determined by the centrality of the vertices it is connected to. The parameter á is 
required to give the equations a non-trivial solution and is therefore the 
reciprocal of an eigenvalue.  It follows that the centralities will be the elements 
of the corresponding eigenvector.  The normalized eigenvector centrality is the 
scaled eigenvector centrality divided by the maximum difference possible 
expressed as a percentage.  

• For a given binary network with vertices v1....vn and maximum eigenvector 
centrality cmax, the network eigenvector centralization measure is S(cmax -
c(vi)) divided by the maximum value possible, where c(vi) is the eigenvector 
centrality of vertex vi.

• This routine calculates these measures and some descriptive statistics 
based on these measures. This routine only handles symmetric data and in 
these circumstances the eigenvalues provide a measure of the accuracy of the 
centrality measure.  To help interpretation the routine calculates all positive 
eigenvalues but only gives the eigenvector corresponding to the largest 
eigenvalue.



Professor C. Magee, 2006
Page 24

Eigenvector Centrality (from Newman and 
Brin and Page)

• Each node has a weight         that is defined to be 
proportional to the weights of all nodes that point to 
the node (i) 

• And 

• And then    Ax =    x       
• Thus the weights are an eigenvector of the 

adjacency matrix (A) with eigenvalue

jj iji xAx ∑−= 1λ

ix

λ
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Florentine Families Centrality Metrics 
(with Eigenvector Centrality)

Acciaiuoli
Ablizzi
Barbadori
Bischeri
Castellani
Genori
Guadagni
Lamberteschi
Medici
Pazzi
Peruzzi
Pucci
Ridolfi
Salvati
Strozzi
Tornabuoni

Centralization

0.071
0.214
0.143
0.214
0.214
0.071
0.286
0.071
0.429
0.071
0.214

---
0.214
0.143
0.286
0.214

0.257

0.368
0.483
0.438
0.400
0.389
0.333
0.467
0.326
0.560
0.286
0.368

---
0.500
0.389
0.438
0.483

0.322

0.000
0.212
0.093
0.104
0.055
0.000
0.255
0.000
0.522
0.000
0.022

---
0.114
0.143
0.103
0.092

0.437

0.049
0.074
0.068
0.074
0.070
0.043
0.081
0.043
0.095
0.033
0.069

---
0.080
0.050
0.070
0.080

---

)( iD nC′ )( iC nC′ )( iB nC′ )( iI nC′
.19
.35
.30
.40
.37
.11
.41
.12
.61
.06
.39
0

.48

.20

.50

.46

.43
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Centrality II
• Numerous metrics exist in the Social Networks Literature for 

assessing the “centrality” of a social network.
• Centrality metrics attempt to characterize the level of 

“centralization” of control or action on this network 
• One application is to assess how important a given actor (node) 

is in the network
• Another application is to assess overall how much of the control

of the network is controlled by the “more important” actors
• The relative importance of single channels/links and groups of 

links has also been of interest.
• Centrality utility:

• The calculation methods have been applied in search, navigation 
and community structure models but otherwise the “Network 
Science” Community does not utilize these measures. CM bias is 
that they are probably useful in social and other networks.

• Hidden Hierarchy, robustness –communication and other 
meanings are all dependent on effects such as those defined and 
some of these measures (betweenness and eigenvector 
centrality) deserve more attention in modern network analysis.
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Related newer Centrality-like metrics
• Jon Kleinberg (Computer Science at Cornell) has done much 

of the  leading work in search and navigation (more later).
• In some of his earliest work on this topic (1997-1999), he 

“invented” some useful new metrics for looking at important 
nodes (particularly on directed networks and probably most 
useful in the domain he was interested in-- the www)

• He looked for ways to find related sets of “Authorities” and 
“Hubs” and differentiated these from single “high in-degree 
nodes”



Professor C. Magee, 2006
Page 28

Hubs Authorities

A Densely Linked Set of Hubs and Authorities

Unrelated page of
large in-degree

Figure by MIT OCW.

See Kleinberg, Jon. M. "Authoriative Sources in a Hyperlinked Environment" Journal of the ACM 46, no. 5 
(1999): 604-632.
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Prestige and Acquaintance Calculation

Authority: not only referred to by many nodes, but also by many 
Hubs.  (measurement: prestige)

Hub: not only refers to many nodes, but also to many Authorities.
(measurement: acquaintance)

These metrics are proving useful in directed citation networks 
(Mo-Han Hsieh thesis work on Internet Standards)

Solve for x and y.
Ax = λy
ATy = µx

A : adjacency matrix
xi : prestige (of node i)
yi : acquaintance
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Lecture 6: Quantitative Aspects Of 
Networks III: Outline

• Network Analysis Terminology notated
• Connectivity
• Some Social Network Concepts-intuition and calculation

• clustering (transitivity)
• centrality

• degree, closeness, betweenness, information, eigen
• prestige and acquaintance

• degree distributions
• skew (and non-skew) distributions
• fitting power laws to observed data
• the normality of power laws
• truncation
• Structural implications and growth assumptions

• Examples of some metrics from broad Assign. # 3 “systems”
• Project Discussion
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Degree Distributions

• Define      as the fraction of nodes in a network with degree k. This is 
equivalent to the probability of randomly picking a node of degree k

• A plot of      can be formed by making a histogram of the degrees of 
the nodes. This is the degree distribution of the network. 

• Histograms
• Normal (and nearly so)
• Skewed (and heavily skewed)

• Suggest some normal or nearly normal distributions..

kp

kp



Two nearly normal distributions
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0
0 50 100

Histogram of heights in centimeters of American males. 
Data from the National Health Examination Survey, 

1959-1962 (US Department of Health and Human Services).

Histogram of speeds in miles per hour of cars on 
UK motorways. Data from Transport Statistics 2003 

(UK Department for Transport).

Heights of Males

P
er

ce
n

ta
ge

 (
%

)

150 200 250

2

4

6

0
0 20 40

Speeds of Cars

60 80 100 120

1

2

3

4

Figure by MIT OCW.

See Newman, M. E. J. cond-mat/0412004v2
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A heavily skewed distribution
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Figure by MIT OCW.

Newman, M. E. J. cond-mat/0412004v2See
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Degree Distributions II

• Define      as the fraction of nodes in a network with degree k. This is 
equivalent to the probability of randomly picking a node of degree k

• A plot of      can be formed by making a histogram of the degrees of 
the nodes. This is the degree distribution of the network. 

• Histograms
• Normal (and nearly so)
• Skewed (and heavily skewed)

• Reasons for normal vs. skewed?

• Power law (skewed)  

• Plot ln vs. ln k, slope =    
Why might cumulative plot be superior?

kp

kp

α−kpk ~

αkp
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Barabasi and Albert(1999) A is actor collaboration, B is www 
and C is the Western Power Grid (incorrectly identified as power law)
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Figure by MIT OCW.



From “Classes of Small World Networks,” showing the same power grid data 
clearly not a power law by use of (appropriate) cumulative distribution (chart b)

Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Amaral, L. A. N., A. Scala, M. Bertelemy, and H. E. Stanley. "Classes of Small World Networks."  Proc Natl Acad Sci
97 (2000): 11149-52. (c) National Academy of Sciences, U.S.A.
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Comparison of Models with Structural  
Metrics : Degree distribution

• Does the existence of a power law for degree distributions for 
networks indicate existence of a specific mechanism for 
formation?
• No, power laws are consistent with a wide variety of 

mechanisms for network formation (Newman, “Power 
laws, Pareto distributions and Zipf’s law”2004/5) 

• Does the existence of power laws for degree distributions for 
networks indicate the existence of a certain kind of structure 
for the network?
• No, power laws are consistent with a wide variety of 

networks having various structures and some without 
central hubs (Li et al)

• Moreover, power laws are the equivalent of normal 
distributions at high variation (Samorodnitsky and Taqqu)
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Central Limit Theorem

The mean of a sequence of n iid random variables with

• Finite µ (and variance)

•

approximates a normal distribution in the limit of a large n.  

( ) 0   <)( 2 >∞− + δδ
ii xExE

From Systems engineering lecture by Dan Frey
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Marginal and Markov process defined

• Marginal probability- In a multivariate distribution, the 
probability of one variable, or function of several of these 
variables, taking a specific value (or falling in a range)
• Metric:             An outer measure on a product space, by 

restriction to one of the two factors: if          is an outer 
measure on X x Y , the marginal probability is a measure 
that satisfies   

• Markov chain or process. A sequence of events, usually 
called states, the probability of each of which is dependent 
only the event immediately preceding it. 

µ
α

)()( YxAA µα =
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Power laws are ubiquitous

Low 
variability

Gaussian Exponential

Central Limit 
Theorem 

(CLT)

Marginalization 
(Markov property)

High 
variability

Power law

CLT
Marginalization
Maximization

Mixtures

More normal than Normal

From seminar by John Doyle at GT in Nov. 2004
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Comparison of Models with Structural  
Metrics : Degree distribution

• Does the existence of a power law for degree distributions for 
networks indicate existence of a specific mechanism for 
formation?
• No, power laws are consistent with a wide variety of 

mechanisms for network formation (Newman, “Power 
laws, Pareto distributions and Zipf’s law”2004/5) 

• Does the existence of power laws for degree distributions for 
networks indicate the existence of a certain kind of structure 
for the network?
• No, power laws are consistent with a wide variety of 

networks having various structures and some without 
central hubs (Li et al)

• Moreover, power laws are the equivalent of normal 
distributions at high variation (Samorodnitsky and Taqqu)

• Power laws are very useful for representation and 
manipulation of data but are not strongly indicative of 
structure or behavior (despite what you may read)
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Degree Distributions III

• Define      as the fraction of nodes in a network with degree k. This is 
equivalent to the probability of randomly picking a node of degree k

• A plot of      can be formed by making a histogram of the degrees of 
the vertices. This is the degree distribution of the network. Some 
distributions

• Random Graph- binomial
(poisson at large n) 

• Exponential 

• Power Law

• lognormal
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Degree Distributions IV

• Other Distributions
• Power law with exponential cutoff is “common”
• For bipartite graphs, there are two degree 

distributions, one for each type of node (multipartite 
one for each type of node)

• For directed graphs, each node has an in-degree and 
an out-degree and the degree distribution becomes a 
function of two variables (j and k for in and out 
degrees). Since in and out degrees can be strongly 
correlated, the joint distribution also contains 
information about the network.

• Maximum Degree (Power Law)
)1/(1

max ~ −αnk
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Network Metrics (from lectures 2, 4 and 
now lecture 6)

• n, the number of nodes 
• m, the number of links 
• 2m/n is the average degree <k> as the number of links on a given

node, k, is the degree. 
• m/[(n)(n-1)] or <k>/(n-1)is the “sparseness” or normalized 

interconnection “density”
• Path length, l

• Connectivity
• Clustering (2 definitions)
• Centrality (5 definitions + prestige and acquaintance)
• Degree Distribution
• Compare some systems (see handout for assignment # 3)

∑
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Networks structural characteristics: 
Preliminary summary of results

• Most measures-even simple ones- show that real systems 
(represented as networks) have “structure” (linking regularities 
beyond random).

• Real system architectures will not be describable by a single 
structural metric or feature. One must consider, size, 
sparseness, degree distribution, transitivity  (and probably 
centrality and others) simultaneously in order to begin to 
understand a specific complex system and its 
similarities/differences from other complex systems.

• Although there are numerous metrics available, these are not 
necessarily (or even likely) to be the simplest or best to 
describe the systems we are interested in compactly.

• However, invention of new characteristics without fully 
understanding and exploring existing metrics is most likely to 
introduce unnecessary confusion rather than enlightenment 
(the 2 transitivity coefficients example)
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References for Lecture 6
• Overall key references

• Wasserman and Faust, Social Network Analysis: Methods and 
Applications, Cambridge University Press (1994)

• M. E. J. Newman, “The structure and function of complex networks”
SIAM Review vol. 45, 167-256 (2003) (posted in assignment section)

• J. Scott, Social Network Analysis: A Handbook Sage Publications 
(2000)

• For Centrality related
• W & F (above) plus UCINET help and Hanneman book
• Jon. M. Kleinberg “Authoriative Sources in a Hyperlinked 

Environment” Journal of the ACM, Vol. 46, no. 5, 1999,pp 604-632
• For Power Laws

• M. E. J. Newman, “Power Laws, Pareto Distrubutions and Zipf’s law, 
cond-mat/0412004v2 (will post with lecture 6)

• Samorodnitsky,G. and Taqqu, S., Stable Non-Gaussian Random 
Processes: Stochastic Processes with Infinite Variance, 
Chapman and Hall, London, (1994)

• A Barabasi and R. Albert, “The Emergence of Scaling Laws in Random 
Networks”, Science 286, pp 509-512 (1999) 

• Amaral, L. A. N., Scala, A., Bertelemy, M. and Stanley, H. E. “Classes 
of Small World Networks”, Proc. Nat. Acad. Sci. 97, 11149-52 (2000)
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