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Lecture 11
• Network terminology and structural characteristics

• Motifs (patterns of directed -and non-directed- links and a 
connection to function)

• A Complex system representation: hierarchy of function

• Coarse-Graining (abstractions of function hierarchically
described) and PGNM

• Return to modularity discussion 
• (Introduction to models (lecture 12 material as time permits)

• Electric Power student team report #1
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Network Analysis Terminology -notated
• node (vertex), link (edge) CM2, 
• size, sparseness, metrics CM2
• degree, average degree, degree 

sequence DW4
• directed, simple DW4
• geodesic, path length, graph  

diameter DW4
• transitivity (clustering), DW10 

connectivity, reciprocity CM6
• centrality (degree, closeness, 

betweenness, information, 
eigenvector) CM6

• prestige, acquaintance CM6
• ideal graphs (star, line, circle, 

team) CM6
• degree distribution, power laws, 

exponents, truncation, CM6

• Models (random, “small world”, 
poisson, preferential attachment)

• constraints, rewiring DW7
• Hierarchy DW7, JM8&9, CM11
• community structure, cliques, 

homophily, assortative mixing, 
degree correlation coefficient 
DW10

• motifs, coarse- graining CM11
• navigation, search, epidemics and 

cascades
• self-similarity, scale-free, scale-

rich DW10,CM11
• dendograms, cladograms and 

relationship strength
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Motifs

• Milo et al. first extended the concept beyond sociological 
networks in a 2002 article in Science titled: “Network Motifs: 
Simple building blocks of Complex Networks”, 
• They defined motifs in this paper as patterns of 

interactions that occur at significantly higher rates in an 
actual network than in randomized networks and 
developed an algorithm for extracting them from (directed) 
networks
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Schematic of network motif detection. Motifs are found in the real
network (A) much more frequently than in a ensemble of random networks (B)
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Motifs b

• Milo et al. first extended the concept in a 2002 article in 
Science titled: “Network Motifs: Simple building blocks of 
Complex Networks”, 
• They define motifs as patterns of interactions that are 

significantly higher than in randomized networks
• They studied 19 networks (in six different classes) 

• For 2 gene transcription networks they found that the 
two different transcription systems showed the same 
motifs 
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The number of times these two motifs occur is more than 10 standard 
deviations greater than their mean number of appearances in randomized

networks. None of the other 13 three node  possible patterns or any other of  
the 199 4 node possible patterns appear more than the mean plus 2 standard

deviations of their appearance in randomized networks  

Figure by MIT OCW.
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Motifs c

• Milo et al. first extended the concept in a 2002 article in 
Science titled: “Network Motifs: Simple building blocks of 
Complex Networks”, 
• They define motifs as patterns of interactions that are 

significantly higher than in randomized networks
• They studied 19 networks (in six different classes) 

• For 2 gene transcription networks they found that the 
two different transcription systems showed the same 
motifs 

• For 8 electronic circuits (in 2 classes), they found 
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The extremely high ratios for the motifs in these cases (even at small
size) can probably be interpreted as evidence of design intent  and
for these small technological systems the importance of available
modules in such systems (lecture 18) probably accounts for the

reuse of the same “motifs” in the variety of circuits of the same class.
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Motifs d
• Milo et al. first extended the concept in a 2002 article in Science

titled: “Network Motifs: Simple building blocks of Complex 
Networks”, 
• They define motifs as patterns of interactions that are 

significantly higher than in randomized networks
• They studied 19 networks (in six different classes) 

• For 2 gene transcription networks they found that the two 
different transcription systems showed the same motifs 

• For 8 electronic circuits (in 2 classes), they found 
reproducible motifs at high concentration  for each class of 
circuit studied

• One interesting conclusion is that the technique can be applied to 
networks with variable nodes and links 

• A second interesting conclusion coming from comparison of 
neurons, genes, food webs and electronic circuits is  

• “Information processing seems to give rise to significantly 
different structures than does energy flow.” The possible 
relevance to lecture 7 and past Whitney work is intriguing and 
addressing it would involve a research question
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Motifs e
• In the software tools and example data section of the web site, 

you can now find “mfinder manual”
• This entry has links to mfinder which is software (free 

download) for detecting motifs on networks (PC, Windows 
XP and Linux versions available)

• Also comes with mDraw which allows visualization of 
results of mfinder.

• Also contains network randomization methods
• Biological, electronic (and social networks) have been found to 

have motifs and in many cases, the motifs have been valuable  
in understanding such systems. 

• Why might electronic and biological networks in particular 
show motifs? What factors or constraints are important in 
these systems?
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Function on a local scale

• The motifs shown for the electronic circuits (and the biological
systems) seem to show evidence of functionality imbedded 
within the network and pursuing a hierarchy of function within 
technological networks is one interesting avenue suggested by 
this work.

• The following slides are a brief discussion of an approach used 
to estimate complexity of various systems attending to 
hierarchy,  interactions and function (Masters thesis of Pierre-
Alain Martin)

• After that, we will return to looking at hierarchies of motifs on 
various levels which is called coarse-graining in the literature 
(hierarchy of function?)
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Aspects of Complexity

• Number of elements (scale)
• Number of interactions
• Patterns of interactions
• Number and  interaction of hierarchical levels
• Scope

• # of functions (and their interactions)
• # of time scales (and their interactions)

• Feedback and diverse time delays
• # of spatial scales (and their interactions)

• In our “network approximations”, we have deliberately started with 
the simple end (to do otherwise risks immediate non calculability) 
and the question is how much complexity must be added for these to 
be useful in our systems for our purposes. 
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The drivers of Complexity in model and 
representation  discussed

• Number of elements
• Number of links (JM idealization)
• Number of basic functions (new here)
• Hierarchy of these basic functions (new here)

CIPD
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Functional Classification Matrix 

Process/Operand Matter
(M)

Energy
(E)

Information (I) Value
(V)

Transform or Process (1) GE Polycarbonate 
Manufacturing 

Plant

Pilgrim Nuclear 
Power Plant

Intel Pentium V N/A

Transport or Distribute (2) FedEx Package 
Delivery

US Power Grid 
System

AT&T 
Telecommunication 

Network

Intl Banking 
System

Store or
House (3)

Three Gorge Dam Three Gorge Dam Boston Public 
Library (T)

Banking Systems

Exchange or Trade (4) eBay Trading 
System (T)

Energy Markets Reuters News 
Agency (T)

NASDAQ 
Trading System 

(T)

Control or Regulate (5) Health Care 
System of France

Atomic Energy 
Commission

International 
Standards 

Organization

US Federal 
Reserve (T)
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System Representation

System Subsystems

CIPD
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Convention

Elements
Transform or 

Process

Transport or 
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House
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Control or 
Regulate

1

2
3 4 5

Level 1 Level 2 Level 3 Level 4 Level 5
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M – Matter 
V – Value

Directional
Bidirectional

CIPD
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Reference Decomposition
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Reference Decomposition
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CIPD
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C = 
(4)Ln 

1))  (H x )1((VLn 
E

E
L jj

j

NI
j

++
×∑

Microscopic

Counting only the non-identical elements

Product

Recommended complexity metric

Normalized Density

V is the number of basic functions in the system
H is the number of hierarchical layers to decompose 

the system to monofunctional elements

CIPD
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= 350.20
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CIPD
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Complexity Estimation and Technological 
System Representation by Networks

• Martin’s thesis work may be a superior way to calculate 
complexity and worked well for the two cases he studied. 

• Much more application to other systems is needed to determine 
its utility.

• For today’s lecture purpose, we introduce it to allow discussion 
of node differentiation  by function and by hierarchical level. 
In addition, we want to note the possible utility of the 
representation developed in that work as a basis for developing 
more effective (yet tractable) network models for technological 
systems. 
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Self-similarity and self-dissimilarity

• Wolpert and Macready(2000) introduced the concept of self-
dissimilarity as a complexity metric

• They defined self-dissimilarity as “the variability of interaction 
patterns of a system at different spatio-temporal scales”

• Wolpert and Macready invented relatively elaborate methods 
for statistically applying their concept and demonstrate it only
through numerical simulations.

• Itzkovitz et. al (2004) have recently developed a method they 
call “coarse-graining” based on their prior work on motifs. 
This  method also assesses self-dissimilarity and has been 
applied to biological and technological networks. 
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Coarse-Graining

• Itzkovitz et. al. investigate Coarse-Graining as an objective 
means for “reverse-engineering” that can be applied even when 
the lower level  functional units are unknown (biological 
focus).

• The coarse-grained version of a network is a new network with 
fewer elements. This  is achieved by replacing some of the 
original nodes by CGU’s (patterns of node  interactions at the 
level being examined-motifs chosen somewhat differently).

• Itzkovitz et. al. apply simulated annealing to arrive  at an 
optimum set of CGU’s (minimize the “vocabulary” of CGU's 
and the complexity of the chosen CGU’s while maximizing the 
coverage of the original network by the coarse-grained 
description). 
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Optimal selection of CGU’s
• Complexity defined (number of “ports”for a node -equivalent 

to JM )

• The number of ports in the network (system) covered by a 
motif group selected

• A scoring function which can be maximized to optimize 
coverage and favors CGU’s which have high coverage and 
many internal nodes (and few external mixed nodes) is
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Coarse-Graining

• Itzkovitz et. al. investigate Coarse-Graining as an objective 
means for “reverse-engineering” that can be applied even when 
the lower level  functional units are unknown (biological 
focus).

• The coarse-grained version of a network is a new network with 
fewer elements. This  is achieved by replacing some of the 
original nodes by CGU’s (patterns of node  interactions at the 
level being examined-motifs chosen somewhat differently).

• Itzkovitz et. al. apply simulated annealing to arrive  at an 
optimum set of CGU’s (minimize the “vocabulary” of CGU's 
and the complexity of the chosen CGU’s while maximizing the 
coverage of the original network by the coarse-grained 
description). 

• Applying  this algorithm to an electronic circuit..



Transistor level map of an  8 bit binary counter used in a digital fractional multiplier. Highlighted is a sub-graph  that 
represents the transistors that make up one NOT gate. Examining possible motifs up to 6 nodes shows…
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Two sets of possible optimal motif-based CGU’s. The solid boxes choice can be arranged to 
arrive at a “gate-level coarse-graining”

Professor C. Magee, 2006
Page 29

93

12 10 10 10 6 5 5 49 9 9 9 9

68 48 17 17 13 13 13 13 13 11 7 48

Figure by MIT OCW.



Professor C. Magee, 2006
Page 30

In the transistor level, nodes represent transistor junctions. In the gate
level, nodes are CGU’s, made of transistors, each representing a logic gate.

Shown is the CGU  that corresponds to a NAND gate. Re-applying the
coarse-graining optimization sequentially yields 2 more levels..

Figure by MIT OCW.
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Coarse-Graining b

• Itzkovitz et. al. investigate Coarse-Graining as an objective 
means for “reverse-engineering” that can be applied even when 
the lower level  functional units are unknown (biological 
focus).

• The coarse-grained version of a network is a new network with 
fewer elements. This  is achieved by replacing some of nodes 
by GCU’s (patterns of node  interactions at the level being 
examined.

• Itzkovitz et. al. apply simulated annealing to arrive  at an 
optimum set of GCU’s (minimize the “vocabulary” of GCU’s
while maximizing the coverage of the original network by the 
coarse-grained description). 

• Applying  this algorithm to an electronic circuit, one finds a 
four level description which has variable functional 
significance and self-dissimilarity at each level
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Figure by MIT OCW.

Gate Level

Nodes are SIUs made of 
transistors

NAND
/NOT

D-flipflop+gate

CGU 1,2,3 CGU 4

AND OR NOR

/

Flip-Flop Level

Nodes are gates or SIUs made 
of gates

Counter Level

Nodes are gates or CGUs made
of gates+flip-flops

D Q

Q



Professor C. Magee, 2006
Page 33

Self-dissimilarity  at multiple levels in the electronic circuit.
This change of patterns with level apparently applies to all

biological and technological networks studied thus far.
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Coarse-Graining c
• Itzkovitz et. al. investigate Coarse-Graining as an objective means 

for “reverse-engineering”.
• The coarse-grained version of a network is a new network with 

fewer elements. 
• Itzkovitz et. al. apply simulated annealing to arrive  at an optimum 

set of GCU’s
• Applying  this algorithm to an electronic circuit, one finds a four 

level description which has variable functional significance and self-
dissimilarity at each level

• Note the fundamental difference between Coarse-Graining and 
algorithms for detection of community structure:
• Community structure algorithms try to optimally divide networks 

into sub-graphs with minimal interconnections but these sub-
graphs are distinct and complex

• Coarse-Graining seeks a small dictionary of simple sub-graph 
types in order to  elucidate the function of the network in terms 
of recurring building blocks
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Coarse-Graining c
• Itzkovitz et. al. investigate Coarse-Graining as an objective means 

for “reverse-engineering”.
• The coarse-grained version of a network is a new network with 

fewer elements. 
• Itzkovitz et. al. apply simulated annealing to arrive  at an optimum 

set of GCU’s
• Applying  this algorithm to an electronic circuit, one finds a four 

level description which has variable functional significance and self-
dissimilarity at each level

• Note the fundamental difference between Coarse-Graining and 
algorithms for detection of community structure:
• Community structure algorithms try to optimally divide networks 

into sub-graphs with minimal interconnections (modularity1) 
but these sub-graphs are distinct and complex

• Coarse-Graining seeks a small dictionary of simple sub-graph 
types in order to  elucidate the function of the network in terms 
of recurring building blocks (modularity 2)
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Different Definitions of “Modular” or 
“Module” (modified from Whitney)

• You can see different elements and the places where they join 
(common engineering view particularly in ME but also in 
economics): H. Simon’s near-decomposability(1962). 

• Each item does a specific thing (form-function, genotype-
phenotype in a one-to-one relationship) (Suh, Altenberg and 
also many biological papers discussing modularity)

• You need only know how to use them and don’t need to know 
what’s inside (common engineering view particularly in EE 
and software)

• Interconnectedness is concentrated inside them (Alexander, 
software design) 

• Their links to the outside are standardized , or simple and few 
(Alexander)

• Modules can be replaced in a system arbitrarily preserving (but 
possibly modifying) function: (Plug and Play intuition)
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Different Definitions of “Modular” or 
“Module”

• You can see different elements and the places where they join 
(modularity 1)

• Each item does a specific thing (form-function, genotype-
phenotype in a one-to-one relationship) (Suh, Altenberg) 
(modularity 2)

• You need only know how to use them and don’t need to know 
what’s inside (modularity 2)

• Interconnectedness is concentrated inside them 
(Alexander)(software design) (modularity 1)

• Their links to the outside are standardized (modularity 2), or 
simple and few (Alexander) (modularity 1)
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“Better” Definition(s) of Modularity
• Modularity 1: 

• The system can be decomposed into subunits to arbitrary depth
• These subunits can be dealt with separately (to some degree)

• In different domains, such as design, manufacturing, use, error-
correction, recycling

• Modularity 2:
• The functions of the system can be associated with clusters of 

physical elements
• in the limit one function:one module

• These elements operate (somewhat) independently
• (They do not have to be physically contiguous)

• Merged definition
• The intuitive “Plug and Play” requires both definitions to be 

operable (without qualifications in brackets)
• There are physical constraints in moderately higher power systems that 

prevent modularity without significant qualification (Whitney) 
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Coarse-Graining d
• Itzkovitz et. al. investigate Coarse-Graining as an objective 

means for “reverse-engineering”.
• The coarse-grained version of a network is a new network with 

fewer elements. 
• Itzkovitz et. al. apply simulated annealing to arrive  at an 

optimum set of GCU’s
• Applying  this algorithm to an electronic circuit, one finds a 

four level description which has variable functional 
significance and self-dissimilarity at each level

• Note the fundamental difference between Coarse-Graining and 
algorithms for detection of community structure

• Note that motifs and coarse-graining have thus far only been 
applied to fairly simple technological systems
• Monofunctional from the Martin-Magee perspective and 

easily functionally modularized
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Research Questions
• Should we apply community structure separation and coarse-

graining at different levels for improved understanding (and 
design?) of complex technological (and biological) systems? 

• Does the form-function relationship only work for relatively 
simple systems?

• To what degree, do the two kinds of modularity apply to 
different levels of abstraction and/or power/information 
differences?

• Hypotheses:
• For a truly complex system, one has multiple functions that 

cannot be separately decomposed.
• For such a system, one might decompose (sequentially) by 

community structure (interaction density) to the level of 
mono-functionality (Martin-Magee representation arrived 
at objectively)

• One then could examine the resulting mono-functional 
systems by coarse-graining looking for more basic form-
function relationships
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Self-similarity and self-dissimilarity b
• Wolpert and Macready(2000) introduced the concept of self-

dissimilarity as a complexity metric
• Self-dissimilarity is defined as “the variability of interaction 

patterns of a system at different spatio-temporal scales”
• Note that as defined this definition is in a sense counter to the 

notion (often loosely defined) of “scale free” which implies (at 
least seems to) the notion that structure is repetitive at various 
scales

• Wolpert and Macready invented relatively elaborate methods 
for statistically applying their concept and demonstrate it only
through numerical simulations

• Itzkovitz et. al (2004) have recently developed a method they 
call “coarse-graining” based on their prior work on motifs. 
This  method also assesses self-dissimilarity and has been 
applied to biological and technological networks. 
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Hierarchical Organization of
Modularity in Metabolic
Networks
E. Ravasz, A. L. Somera, 
D. A. Mongru, Z. N. Oltvai,
A.-L. Baraba´si
SCIENCE VOL 297 
30 AUGUST 2002 p 1551

A. Scale free
B. Modular, not scale free
C. Nested modular, scale free

A

C

B

Figures by MIT OCW.
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Probabilistic Generation of Network 
Motifs (PGNMs)

• Based on idealized block models arrived at by assigning roles 
to nodes (limited number of roles) and defined relationships 
between nodes of differing roles (types). A modified scoring 
function is used 

• Where g includes generalizations of the CGU’s according to 
the block model idealization (an example of generalizations 
relative to the BiFan motif is shown in the next slide)
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Comparison of this idealization to two cases is shown in 
the following slide
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Probabilistic Generation of Network 
Motifs (PGNMs) II

Figure by MIT OCW.

Role 1

A

Role 2

0

0

1

0[ [
1 2 3 4Role 1

Role 2

Role 1

Role 1

Role 2

0 0
0 0
0 0
0 0

1 0
1 1
0 0
0 0

0
0 0 1 1

1
1
0
0

0 0 0

1
1 1 1

0
0 0

0
0
0
0

0
00

0
0
0

0 0 00
[ [ 0 0

0 0
0 0
0 0

1 1
1 1
0 0
0 0

0
0 1 0 0

1
1
0
0

0 0 0

0
0 0 0

0
0 1

0
0
0
0

1
10

0
0
0

0 0 00
[ [

5 6 7

1 2

3 4

5 6 7

G1 G2



Professor C. Magee, 2006
Page 46

Self-similarity and self-dissimilarity c
• The scale-free modular example is self-similar.
• However, the electronic circuits and biological systems studied 

by Itzkovitz et. al are not scale free in that even though the 
modules are consistent with one another at a given scale, the 
patterns are dissimilar (in the Wolpert/Macready sense) at 
different scales (or levels of agglomeration)

• Note that the electronic circuit systems shown to be “scale-
rich” by Itzkovitz et. al. show power law degree relationships 
so the use of the term “scale-free” when power laws is 
observed is nonsensical. The lack of correlation between 
structure and power laws was mentioned in lecture 6. 

• Li et. al  and Doyle et al have introduced the phrase “scale-
rich” partly in response to the work by Itzkovitz and have 
developed some other metrics (related  to degree correlation, r)
and we will return to this theme in a later discussion of models
of the Internet
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