
Network Observational Methods and�
Quantitative Metrics: II�

• Whitney topics�
– Community structure (some done already in 

Constraints - I) 
– The Zachary Karate club story�
– Degree correlation 
– Calculating degree correlation for simple 

regular structures like trees and grids 
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Clustering or Grouping Metrics�
•� Community structure 

– Seek to find tightly connected subgroups within a larger network 
•� Clustering coefficient 

–�Measure the extent to which nodes link to each other in triangles 
–�Are your friends friends? 
–�Clusters are often called “modules” by network researchers and are 

also associated by them with function 
•� Assortativity and disassortativity (AKA degree correlation) 

–�Do highly linked nodes (“hubs”) link to each other (assortative) or 
do they link with weakly linked nodes (disassortative) 

•� Average (shortest) path length (AKA geodesic) 
–�How far apart are nodes 
–�Max geodesic is called network diameter 
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Community-finding and Pearson�
Coefficient r�

•�Technological networks seem to have r < 0�
•�Social networks seem to have r > 0 
•�Newman and Park sought an explanation in 

community structure and clustering 
•�Their algorithm for finding communities looks 

like a flow algorithm 
•�Zachary used a flow algorithm to find the 

communities in the Karate Club 

3/20/06 Quantitative Metrics II © Daniel E Whitney 1997-2006� 3 



Summary Properties of Several Big �
Networks (Newman) 

SOCIAL
Film actors
Company directors
Math coauthorship
Physics coauthorship
Biology coauthorship
Telephone call graph
E-mail messages
E-mail address books
Student relationships
Sexual contacts

Network Type n m z l C(1) C(2) rα

INFORMATION
WWW nd.edu
WWW Altavista
Citation network
Roget's Thesaurus
Word co-occurrence

TECHNOLOGICAL
Internet
Power grid
Train routes
Software packages
Software classes
Electronic circuits
Peer-to-peer network

BIOLOGICAL
Metabolic network
Protein interactions
Marine food web
Freshwater food web
Neural network
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Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total number of edges m; mean 
degree z; mean vertex-vertex distance l; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); 
clustering coefficient C(1); clustering coefficient C(2); and degree correlation coefficient r. Blank entries indicate unavailable data.
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Calculating r�

1

2

3

4

5

# x y

1 2 3

1 2 2

2 3 1

2 3 2

2 3 2

3 1 3

4 2 3

4 2 3

5 2 2

5 2 2

! 

r =
x " x ( ) y " y ( )#

x " x ( )
2

# y " y ( )
2

#

! 

x = 2

y = 2 r = -0.676752968 using Pearson function in Excel 

Note: if all nodes have the same k then r = 0/0�
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n=1�
binary tree with n=5
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2 rows like this - ignore
n=2 6 rows like this - ignore 

All other rows like this

1

2

3

4

5

n=3 
except last two sets 

2n-2 rows of 3-3
n=4 2*2n-2 rows of 3-1 

3-3 means 
3-1 = 1-3 and means 

! 

3" x ( )
2

n=5 

2n-1 rows of 3-1 

Census of Pairs for�
Pure Binary Tree�

! 

3" x ( ) 1" x ( )
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Result of Census�

Sum of row entries = �
Total number of rows = = ksum�

! 

k
i
= 2

n+1
+ 4"

! 

k
i

2

=10*2
n"1 "14#

! 

"  x =
k

2#
k#

= 2.5 in the limit of large n

<k>=2 

Total 2n rows of 3-1
Approx (ksum - 2n) rows of 3-3

r = - 0.4122 

3/20/06 Quantitative Metrics II © Daniel E Whitney 1997-2006 7�



Closed Form Results�

Property Pure Binary Tree Binary Tree with Cross-linking 

ksum 

! 

2
n +1
" 4  

! 

3*2
n
"10 

ksqsum 

! 

10*2
n"1
"14  

! 

13*2
n
" 64  

! 

x  

! 

# 2.5 as n becomes large (>~ 6)  

! 

#
13

3
 as n becomes large (>~ 6)  

Pearson numerator 

! 

~ 2n (3" x )(1" x ) + (ksum " 2n )(3" x )2
 

! 

~ 2n (5 " x )(1" x ) + (ksum " 2n )(5" x )2
 

Pearson denominator 

! 

~ 2n"1(1" x )2 + (ksum " 2n"1)(3" x )2
 

! 

~ 2n"1(1" x )2 + (ksum " 2n"1)(5" x )2
 

! 

r  

! 

#"
1

3
 as n becomes large 

! 

#"
1

5
 as n becomes large 

 

l

  

! 

r =
16(2 " x )(3" x ) + 8(l " 3)(3" x )

2

2(2 " x )
2

+12(l " 2)(3" x )
2

#
2

3

1

2

3

4

5

1

2

3

4

5

Note: Western Power Grid r = 0.0035 

Bounded grid 
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Nested Self-Similar Networks�
nested

r = - 0.25, c = 0.625

nested2

r = - 0.0925, c = 0.5500

Probably, r = 0 
in the limit as the 
network grows 
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Tree with Diminishing Branching Ratio�

16 times

8 times

4 times

1 node with k = 16

16 nodes with k = 9

8*16 = 128 nodes with k = 5

4*8*16 = 512 nodes with k = 3

2*4*8*16 = 1024 nodes with k = 1

2 times

r = 0.38166  
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Toy Networks with Positive and�
Negative r�
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Toward Matlab for Pearson (symmetric)�

! 

r =
x " x ( ) y " y ( )#

x " x ( )
2

# y " y ( )
2

#

Look at numerator, ignore xbar for the moment�

! 

xiy j( ) = xi
'

"ij y j = x
'
Ax#

! 

"ij =1 if  i links to j

"ij = 0  if  i does not link to j

Essentially the calculation is a quadratic form.�
My bias: control theory, where quadratic forms are common�
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Matlab Implementation�

function prs = pearson(A)�
%calculates pearson degree correlation of A�
[rows,colms]=size(A);�
won=ones(rows,1);�
k=won'*A;�
ksum=won'*k';�
ksqsum=k*k';�
xbar=ksqsum/ksum;�
num=(k-won'*xbar)*A*(k'-xbar*won);�
kkk=(k'-xbar*won).*(k'.^.5);�
denom=kkk'*kkk;�
prs=num/denom;�
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Newman-Girvan Algorithm�

•�Seeks edges along which a lot of traffic flows 
between nodes, revealed by high edge 
betweenness 
– Edge betweenness rises with number of shortest 

paths between all node pairs that pass along 
that edge 

•�Removing this edge and repeating the process 
reveals clusters that roughly conform to 
Modularity 1 (?) 
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Zachary’s Karate Club: A Social�

3/ / i l ii i i

Network with r < 0 (from UCINET) 

20 06 © Dan E Wh tney 1997-2006 15 Quant ve Metr cs II 

There is no link between 23 and 34. 
Every later scholar has this error. 
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Zachary’s Karate Club - Most Studied by�
Community-Finding Researchers�

•�Zachary studied a karate club that had an internal 
fight and split into two 

•�Based on data he took about relationships between 
club members, he “predicted” how the group 
would split 

•�His algorithm correctly assigned all but one 
person to the groups they actually joined after the 
split 

•� “An Information Flow Model for Conflict and Fission in Small Groups,” J 
Anth Res v 33, 1977, pp 452-473 
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The Reason for the Split�

•�The karate instructor “Mr Hi” wanted more money�
•�The club president “John A” felt the club 

administrators should set his salary 
•�Many angry club meetings occurred over this 

conflict 
•�When John A fired Mr Hi, the group split�
•�Half formed a new club around Mr Hi 
•�The other half found another instructor or gave up 

karate 
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The Dynamics�

•�Different club members took different sides�
•�Club meetings (different from karate lessons) 

were fights based on votes, and the faction with 
the most votes prevailed at any given meeting 

•�“Political” activity occurred outside the club as the 
sides’ activists recruited others to attend meetings 
and vote their way 
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Zachary’s Model�
•�Nodes are club members, plus Mr Hi�
•�Mr Hi is node #1, John A is node #34�
•�There is a line between two nodes if those people meet in

some venue outside of the club 
–�Venues include local campus pub, Mr Hi’s private 

karate school, common classes, outside karate 
tournaments, etc 

•�Each edge has a weight = the number of outside venues
that the two people have in common 
–�Based on the idea that communication, including

recruiting people to come to club meetings, happens in
the outside venues, and that more venues in common 
means stronger communication, represented by stronger 
edge weight 
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Zachary’s Algorithm�

•�Zachary assumed that each side tried to recruit its adherents
and keep the other side from learning about a meeting 

•�So communication flow was important, and the group would
likely split at “chokepoints” of communication between the 
groups 

•�He adopted the Ford-Fulkerson capacitated flow algorithm -
max flow/min cut - from “source” Mr Hi to “sink” John A: 
the cut closest to Mr Hi that cuts saturated edges divides the
network into the two factions 

•�He correctly predicted every member’s decision except #9�
•�His algorithm depended on knowing “who was who” and 

“what was what” 
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Max-flow Min-Cut Theorem�

S
T

c
1

c
2

c3

The cut divides the network in two

f
1

f
2

f3

Its capacity = c
1
+c

2
+c

3

Its flow = f
1
+f
2
+f
3

flow in = Fmax flow out = Fmax

“There is a cut such that c
1
+c

2
+c

3
= F

max
“

No other cut can have less capacity
or else the total flow will be less than Fmax
Other cuts can have more capacity
but that makes no difference.
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The Relationship Graph�
This version of the Karate club 
appears in several papers 
by Newman or Girvan and Newman 
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Different Approaches and Lessons�

•�Zachary’s method depends on knowing facts about both
nodes and edges, and uses a weighted graph 

•�Edges describe relationships outside the club�
•�#9 chose Mr Hi’s group for an inside reason, something no 

one else did 
•�Later scholars used no info about nodes and edges and

used an unweighted graph, but get the same answer and
make the same mistake with #9 

•�Newman uses geodesics between all pairs of nodes while
Zachary uses only paths between 1 and 34. 

•�How come later scholars get the same answer? 
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Possible Explanation�

•�The uncommitted members were the only bridges 
between two committed groups 

•�There were only a few such people and they 
shared few venues with members of both factions 

•�Thus the break can practically be seen on the 
unweighted graph with the naked eye 

•�So possibly later scholars have simply been lucky�
• The goal of abstraction is to learn as much as you�

can while knowing a priori as little as possible�
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Network Comparisons�

Network Type Clustering Path Length Pearson Degree 
Coefficient Coeff 

Random (Erdös & Small Small Zero 
Rényi) 
Regular Grid Large Large compared to Positive 

random 
Regular Grid Large Small, similar to ? 
Randomly random 
Rewired (Watts 
and Strogatz) 
Trees Small Small Negative 

“Sociological” Large compared to Small Positive? 
random 

“Technological” Large ? Negative? 
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Conventional Wisdom Regarding r�

•�Positive r means hubs connect to hubs�
•�Positive r means that high degree nodes tend to connect to

each other and so do low degree nodes 
•�If self-loops and multiple edges between nodes are not

allowed, then hubs have no choice but to connect to low-
degree nodes, so r will be < 0 (“hubs repel each other”) 

•�These explanations do not work reliably, although the
converses work sometimes 
– If high k link to high k and low k to low k then r > 0�

•�Note: a random graph has r = 0 (-0.0105 in MATLAB) 
•�Also, small networks can have big values of r 
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Bike Rewired to Have Max r�

r = 0.1815 
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Another Bike with r = 0.1448�
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Li-Alderson “Toy” Internet Client-Server�
Networks All Have Same Degree Sequence�

and r ~ - 0.17�
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Figure 5 in Li, Lun, David Alderson, John C. Doyle, and Walter Willinger. "Towards a Theory of Scale-Free Graphs: Definition, Properties,
 and Implications."  Internet Mathematics 2, no. 4 (2006): 431-523. Reproduced courtesy of A K Peters, Ltd. and David Alderson.
 Used with permission.


