
Demand Forecasting II
Causal Analysis

Chris Caplice 
ESD.260/15.770/1.260 Logistics Systems

Sept 2006 



© Chris Caplice, MIT2MIT Center for Transportation & Logistics – ESD.260
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Approach and Methods

Ordinary Least Squares (OLS) Regression
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Forecast Evaluation

How do we determine what is a good forecast?  
Accuracy - Closeness to actual observations
Bias - Persistent tendency to over or under predict
Fit versus Forecast – Tradeoff between accuracy to 
past forecast to usefulness of predictability
Forecast Optimality – Error is equal to the random 
noise distribution

Combination of art and science
Statistically – find a valid model
Art – find a model that makes sense
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Accuracy and Bias Measures
1.  Forecast Error:  et = xt - ̂xt

2. Mean Deviation: 

3. Mean Absolute Deviation

4. Mean Squared Error:  

5. Root Mean Squared Error:  

6. Mean Percent Error: 

7. Mean Absolute Percent Error: 
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MA3 MA10 MA20 ActDemand

MA3 MA10 MA20
MD 0.05     0.21     0.35     

MAD 0.56     1.07     1.41     
MSE 0.47     1.67     2.71     

RMSE 0.68     1.29     1.65     
MAPE 0.50% 0.96% 1.27%

Moving Average Forecasts
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Analysis of the Forecast

Are the forecast errors 
~N(0,Var(e))?

For Moving Averages:
What is the expected value of the 
errors?
What is the variance of the errors?

From actual observations, 
Are the observed errors ~N(0,Var(e))?
For the MA3 data

μe = 0.05
σe= 0.69 
σD= 1.478 

Testing for Normalcy – Chi-Square, 
Kolmogorov-Smirnov, or other tests
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Corrective Actions to Forecasts

Measures of Bias
Cumulative Sum of Errors (Ct)

Normalize by dividing by RMSE (Ut)
Ut should ~0 if unbiased

Smoothed Error Tracking Signal (Tt)
Tt=zt/MADt
Where zt= ωet + (1-ω)zt-1 (smoothing constant)

Autocorrelation of forecast Errors
Correlation between successive observations

Corrective Actions
Adaptive Forecasting

Methods where the smoothing coefficients change over time
Found (generally) to be no better than standard methods

Human Intervention
Overrule the model’s output – look for reason 
Rules of thumb:  |Tt|>f  or  |Ct|>k(RMSE)  (f~0.4 and k~4)
Lower values (of k or f) lead to more intervention
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Causal Forecasting Models

Assumes that demand is highly correlated with some 
environmental factors
Model is built to relate the independent exogenous 
factors to the demand
Examples:

Diapers ~ f(birth rates lagged by 1 year)
NFL Jerseys ~ f(team and individual performance)
New products ~ f(product lifecycle)
Promotional Items ~ f(marketing promotions & ads)
Regional Sales ~ f(household demographics in area)
Umbrellas / Fuel ~ f(weather, temperature, rain, etc.)

Form of Dependent Variable dictates the method used 
Continuous – takes any value 
Discrete – takes only integer values 
Binary – is equal to 0 or 1 
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OLS Linear Regression
The relationship is described in terms of linear model
The data (xi,yi) are the observed pairs from which we try to 
estimate the β coefficients to find the ‘best fit’
The error term, ε, is the ‘unaccounted’ or ‘unexplained’
portion
The error terms are assumed to be iid ~N(0,σ) and catch 
all of the factors ignored or neglected in the model
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OLS Linear Regression

Residuals
Predicted or estimated values are found by using the regression 
coefficients, b.
Residuals, ei, are the difference of actual – predicted values
Find the b’s that “minimize the residuals”
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How should I measure the residuals?
Min sum of errors  - shows bias, but not accurate
Min sum of absolute error  - accurate & shows bias, but intractable
Min sum of squares of error – shows bias & is accurate 
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The best model minimizes the residual sum of squares
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OLS Linear Regression
We can find the optimal values of b0 and b1 by taking 
first order conditions of the SSE:
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This gives us the following coefficients:
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0 1 1 ... 1, 2,...i i k ki iY x x for i nβ β β ε= + + + + =

Expansion to multiple variables is straightforward
So, for k variables we need to find k regression 
coefficients
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OLS Example
Month Demand

Jan 3,025       
Feb 3,047       
Mar 3,079       
Apr 3,136       

May 3,454       
Jun 3,661       
Jul 3,554       

Aug 3,692       
Sep 3,407       
Oct 3,410       
Nov 3,499       
Dec 3,598       
Jan 3,596       
Feb 3,721       
Mar 3,745       
Apr 3,650       

May 4,157       
Jun 4,221       
Jul 4,238       

Aug 4,008       
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OLS Example

Establish relationship 
Fi = f(X1i, X2i, …Xni)

=β0+β1X1i+β2X2i+…+βnXni

Fi = Level + Trend + Season
= β0 + β1 X1i + β2 X2i

Where X2i = 1 if a summer month, 
= 0 o.w.

Points to consider:
What if the trend is not linear? 
How do I handle seasonality if it impacts the trend? 
How does OLS treat old versus new data?  
How much information do I need to keep on hand?

Month Demand Period Summer 
Jan 3,025       1 0
Feb 3,047     2 0
Mar 3,079       3 0
Apr 3,136       4 0

May 3,454       5 1
Jun 3,661       6 1
Jul 3,554       7 1

Aug 3,692     8 1
Sep 3,407       9 0
Oct 3,410     10 0
Nov 3,499       11 0
Dec 3,598       12 0
Jan 3,596       13 0
Feb 3,721     14 0
Mar 3,745     15 0
Apr 3,650       16 0

May 4,157       17 1
Jun 4,221       18 1
Jul 4,238     19 1

Aug 4,008       20 1
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OLS Example (Excel)

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.979            
R Square 0.958            
Adjusted R Square 0.953            
Standard Error 79.21            
Observations 20

ANOVA
df SS MS F Significance F

Regression 2 2442766.966 1221383.483 194.6730408 1.91955E-12
Residual 17 106658.4214 6274.024786
Total 19 2549425.387

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2,969.14       37.21               79.79            0.0000          2,890.62          3,047.65    2,890.62       3,047.65        
Period 48.03            3.20                 15.00            0.0000          41.27               54.79         41.27            54.79             
Summer 303.51          37.70              8.05            0.0000        223.97            383.04     223.97        383.04         

Fi = 2969 + 48 (Period) + 304 (Summer_Flag)
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OLS Example (Excel)

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.979            
R Square 0.958            
Adjusted R Square 0.953            
Standard Error 79.21            
Observations 20

ANOVA
df SS MS F Significance F

Regression 2 2442766.966 1221383.483 194.6730408 1.91955E-12
Residual 17 106658.4214 6274.024786
Total 19 2549425.387

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2,969.14       37.21               79.79            0.0000          2,890.62          3,047.65    2,890.62       3,047.65        
Period 48.03            3.20                 15.00            0.0000          41.27               54.79         41.27            54.79             
Summer 303.51          37.70              8.05            0.0000        223.97            383.04     223.97        383.04         

Regression
Coefficients

Standard Error (estimate of σ
around the regression line)

Degrees of 
Freedom = n-k-1

Coefficient of Determination 
R2= 1-ESS/TSS=RSS/TSS

Std Error of Regression 
Coeff (sbm)

t-Statistic (bm/sbm)
Is bm different from 0?

P-value tells you % conf.

Sum of the Squares 
Regression (RSS) =∑(ŷ-̅y)2

Error (ESS) =∑(y-ŷ)2

Total (TSS) =∑(y-̅y)2

95% 
Confidence 
Intervals
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Coefficient of Determination (R2)

Measures Goodness of Fit of the model
Captures the amount of variation that the model 
‘explains’

R2=1-ESS/TSS = RSS/TSS
TSS = ESS + RSS
Variation of observed around mean = Variation of observed 
around estimated – Variation of estimated around the mean

Generally, a higher R2 is better, but . . .
Model needs to make sense
High R2 does not indicate causality
It really depends on how the model is being used as 
to what is ‘good enough’
The individual coefficients need to be tested
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Discrete Choice Models

What if you are predicting demand for one 
product over another?  

Model Selections (Blue vs. Red Cars)
Mode Forecasting (pick one of many)
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Sales Forecasting Methods

Expert Opinions
44.8% Sales Force
37.3% Executives
14.9% Industry Surveys

Statistical Models
30.6% Naïve Model
20.9% Moving Average
11.2% Exp. Smoothing
6.0% Regression
3.7% Box-Jenkins

Source: Dalrymple (1987) Survey 134 companies

Sales Forecast Errors (MAPE) by 
forecast horizons in years

Level <.25 yrs ≤2 yrs >2 yrs

Industry 8 11 15

Corporate 7 11 18

Product Group 10 15 20

Product Line 11 16 20

Product 16 21 26

Source: Mentzer & Cox (1984) 
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Misc. Forecasting Issues

Data Issues
Sales data is not demand data 
Transactions can aggregate and skew actual demand
Ordering quantities can dictate sourcing
Historical data might not exist

Demand visibility can be skewed by level of echelon  
Bullwhip effect
Collaborative Planning, Forecasting, and Replenishment 
(CPFR)

Forecasting vs. Inventory Management
Statistical Validity vs. Use and Cost of Model
Demand is not always exogenous 



Questions, Comments, 
Suggestions?
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