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Agenda

Problem and Background
Four Fundamental Approaches
Time Series Methods

“Predictions are usually difficult 
– especially for the future”

Yogi Berra
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Demand Processes

Demand Forecasting
Predict what will happen in the future
Typically involves statistical, causal or other model
Conducted on a routine basis (monthly, weekly, etc.) 

Demand Planning
Develop plans for creating or affecting future demand
Results in marketing & sales plans – builds unconstrained 
forecast 
Conducted on a routine basis (monthly, quarterly, etc.) 

Demand Management
Make decisions in order to balance supply and demand within 
the forecasting/planning cycle 
Includes forecasting and planning processes
Conducted on an on-going basis as supply and demand changes
Includes yield management, real-time demand shifting, forecast 
consumption tracking, etc.
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Four Fundamental Approaches

Subjective
Judgmental

Sales force surveys
Delphi techniques
Jury of experts

Experimental
Customer surveys
Focus group sessions
Test Marketing
Simulation

Objective
Time Series

“Black Box” Approach
Uses past to predict the 
future

Causal / Relational
Econometric Models
Leading Indicators
Input-Output Models

Often times, you will need to use a combination of approaches
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Cost of Forecasting vs Inaccuracy

Cost of Forecasting

Forecast Accuracy

Co
st

Cost of Errors 
In Forecast

Total Cost
Overly Naïve Models   Excessive Causal Models   Good Region
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Time Series

The typical problem:
Generate the large number of short-term, SKU level, locally 
disaggregated demand forecasts required for production, logistics, 
and sales to operate successfully.

Predominant use is for:
Forecasting product demand of . . .
Mature products over a . . .
Short time horizon (weeks, months, quarters, year) . . . 
Using  models to assist in the forecast where . . . 
Demand of items is independent

Special situations are treated differently
New product introduction
Old product retirement
Short life-cycle products
Erratic and sparse demand
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Time Series

Basic Components
Level (a)

Value where demand hovers around
Trend (b) 

Persistent movement in one direction
Typically linear but can be exponential, quadratic, etc.

Seasonal Variations (F) 
Movement that is periodic to the calendar
Hourly, daily, weekly, monthly, quarterly, etc.

Cyclical Movements (C) 
Periodic movement not tied to calendar

Random Fluctuations (e or ε)
Irregular and unpredictable variations, noise
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Method of using past occurrences to model the future
Assumes some regular & recurring basis over time

Combine components to model demand in period t
Multiplicative: xt = (b)(F)(C)(e)
Additive: xt = a + b(t) + Ft + Ct + et
Mixed: Combination xt = a + b(Ft)t + et 
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Time Series

Simple Procedure
1. Select an appropriate underlying model of 

the demand pattern over time
2. Estimate and calibrate values for the model 

parameters
3. Forecast future demand with the models 

and parameters selected
4. Review model performance and adjust 

parameters and model accordingly
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Time Series: Example

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Week
V

ol
um

e

What is the forecast for period t+τ
made at the end of period t, ̂xt,t+τ?

So, what can I say?

108
109
110
111
112
113
114
115
116

1 10 19 28 37 46 55 64 73 82 91 10
Week

D
em

an
d



© Chris Caplice, MIT10MIT Center for Transportation & Logistics – ESD.260

Time Series
How important is the history?  Two 
extreme assumptions . . . .

Cumulative Forecast
All history matters equally
Pure stationary demand

Underlying Model:

x t =  a  +  e t
where:  

e t ~ iid (μ=0 , σ2=V[e])

Forecasting Model:

1
, 1

=
+ = ∑

t
ii

t t
x

x
t

Underlying Model:

x t =  xt-1 +  e t
where:  

e t ~ iid (μ=0 , σ2=V[e])

Forecasting Model:

Naïve Forecast
Most recent dictates next
Random Walk, Last is Next

, 1+ =t t tx x
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Time Series
Moving Average

Only include the last M observations 
Compromise between cumulative and naïve

Cumulative model (M=n)
Naïve model (M=1)

Assumes that some step (S) occurred

Underlying Model:

x t =  a  +  e t
where:  

e t ~ iid (μ=0 , σ2=V[e])

Forecasting Model:

1
, 1

= + −
+ = ∑

t
ii t M

t t
x

x
M

So, some questions
How do we find M?
What trade-offs are 
involved?
How responsive are the 
three models?
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Time Series: Exponential Smoothing

Why should past observations all be weighted the same?
Value of observation degrades over time
Introduce smoothing constant (α)

Underlying Model:

x t =  a  +  e t
where:  

e t ~ iid (μ=0 , σ2=V[e])

Forecasting Model:

̂xt,t+1 = ̂xt-1,t + αet (0<α<1)

or

̂xt,t+1=αxt + (1-α)̂xt-1,t

Recall that 
et = xt - ̂xt-1,t
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̂xt,t+1 = αxt + (1-α) ̂xt-1,t

but recalling that ̂xt-1,t = αxt-1 + (1-α) ̂xt-2,t-1

̂xt,t+1 = αxt + (1-α)(αxt-1 + (1-α) ̂xt-2,t-1)

̂xt,t+1 = αxt + α(1-α)xt-1 + (1-α)2 ̂xt-2,t-1

̂xt,t+1 = αxt + α(1-α)xt-1 + α(1-α)2xt-2 + (1-α)3 ̂xt-3,t-2

̂xt,t+1 = α(1-α)0xt + α(1-α)1xt-1 + α(1-α)2xt-2 + α(1-α)3xt-3...

Time Series: Exponential Smoothing
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Pattern of Decline in Weight
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Time Series: Exponential Smoothing
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Time Series: Non-Stationary Models

Note that MA and standard Exp Smoothing will just lag a trend
They only look at history to find the stationary level
Need to capture the ‘trend’ or ‘seasonality’ factors

MA with Trend Data
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Time Series: Level & Trended Data

Similar to exponential smoothing
Holt’s Method - smoothing constants for level (a) and 
trend (b) terms

Underlying Model:
x t =  a + bt +  e t

where:  e t ~ iid (μ=0 , σ2=V[e])

Forecasting Model:
̂xt,t+τ = ̂at + τ ̂bt

Where: ̂at = αxt + (1-α)( ̂at-1 + ̂bt-1)

̂bt = β( ̂at - ̂at-1) + (1- β) ̂bt-1
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t-1 t t+1

Objective is to forecast t+1 & beyond

Forecast 
at t+1
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Source: Atul Agarwal MLOG’05

This is a linear 
weighted combination 
of level at      and BA

This is a linear weighted 
combination of slopes 
at        andC D

Time Series: Level & Trended Data
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Time Series: Level & Seasonal Data

Multiplicative model using exponential smoothing 
Introduces seasonal term, F, that covers P periods.

Underlying Model:
x t =  aFt +  e t

where:  e t ~ iid (μ=0 , σ2=V[e])

Forecasting Model:  
̂xt,t+τ = ̂at ̂Ft+τ-P

Where : ̂at = α(xt/ ̂Ft-P) + (1- α) ̂at-1
̂Ft = γ(xt/ ̂at) + (1- γ) ̂Ft-P

An Example where P=4, t=12, τ=1:
̂x12,13 = ̂a12 ̂F9
̂a12 = α(x12/ ̂F8) + (1- α) ̂a12

̂F12   = γ (x12/ ̂a12) + (1- γ) ̂F8
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Expand exponential model to include seasonality
Winter’s Method – Similar to Holt’s Method with added term 
Seasonality is multiplicative

Underlying Model:
x t =  (a+bt) Ft +  e t

where:  e t ~ iid (μ=0 , σ2=V[e])

Forecasting Model:  
̂xt,t+τ =( ̂at +τ ̂bt) ̂Ft+τ-P

Where : ̂at = α(xt/ ̂Ft-P) + (1- α)( ̂at-1+ ̂bt-1)
̂bt = β( ̂at - ̂at-1) + (1- β) ̂bt-1
̂Ft = γ(xt/ ̂at) + (1- γ) ̂Ft-P

Time Series: Level, Seasonal, & Trended Data
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Comments on Time Series Models

Most of the work is bookkeeping
Initialization procedures can be arbitrary
Adding seasonality greatly complicates calculations

Most of the value comes from sharing with users
Provide insights into explaining abnormalities
Assist in initial formulations and models

Picking appropriate smoothing factors
Level (α) 

Stationary: ranges from 0.01 to 0.30 (0.1 reasonable)
Trend/Season: ranges from 0.02 to 0.51 (0.19 reasonable)

Trend (β) 
Ranges from 0.005 to 0.176 (0.053 reasonable)

Seasonality (γ)
Ranges from 0.05 to 0.50 (0.10 reasonable)



Questions, Comments, 
Suggestions?
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