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The Bridges of Kdnigsberg

» The town of Konigsberg in 18t century .
Prussia included two islands and seven \:7 ;
bridges over the river Pregel.
A B
* Residents had often thought about Q k
D

finding a walk such that starting from any

of the four places, A,B,C,D, one crosses all mage by MIT OpenCourseivare.
of the seven bridges only once and then
returns to the starting p|ace_ Figure: |http://www.transtutors.com/homework-

lhelp/Discrete+Mathematics/Graph+Theory/konisberg
|-multigraph-bridge.aspx

e No one could find such a walk....
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Graph Theory

Leonhard Euler, in 1736, came up with the
realization that this was not a problem of traditional ‘ | c

geometry — measurements of angles, lengths,
orientations do not matter.

The only two things that mattered were whether Q /:
D

the islands or banks are connected by a bridge, and
by how many bridges.

He modeled each place (island or bank) as a ‘vertex’
and each bridge as an ‘edge’ that connected the
vertices.

He mathematically proved that no such walk existed
for the Koningsberg problem and founded an
entirely new branch of mathematics along the way.

Figure: |http://www.transtutors.com/homework- -
MIT_ESD |help/Discrete+Mathematics/Graph+Theory/konisberg Ill I
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Modeling Example - |

There were six people: A, B, C, D, E, and F in a party and
following handshakes among them took place:

A shook hands with B, C, D, E and F
B, in addition, shook hands with D and E
C, in addition, shook hands with F

Ref [3]



Modeling Example - I

Consider a job application problem. There are three jobs J,, J,, J;
for which four applicants A;, A,, A3, A, have applied.

A, has applied for J; and J,

A, has applied for J,, J, and J; A, A, A, A,
A; has applied for J;

A, has applied for J, and J;

This type of graph is called a bi-partite graph.

J1 Jo J3
A bi-partite graph has two types of vertices
(nodes) and there are no edges between nodes
of the same type. Ref [3]

m I I I - -
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Modeling Example - Il

Image by MIT OpenCourseWare.
http://cvpr.uni-muenster.de/teaching/wle/projektseminarWSlO/

| http://www.airlineroutemaps.com/USA/American_Airlines_caribbean.shtml
]
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Graphs

e Agraphis a finite collection of vertices (or
nodes) and edges (or links).

 Toindicate a graph G has vertex set V and
edge set E, we write G=(V,E)

e Each edge {x,y} of G is usually denoted by
XY, Or yX.

e What is the vertex set V(G) and edge set
E(G) of the graph G shown?

Ref [3
G a
b
d
c /
e
g

V(G)={a,b,c,d, e f g}
E(G)={ab, bc, ad, de, af, fg, fe}
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Adjacency

If Xy is an edge of G, the X and y are
adjacent vertices

Two adjacent vertices are referred to as
neighbors of each other

The set of neighbors of a vertex v is called
the open neighborhood (or simply
neighborhood) of v and is denoted as N(V)

For graph G shown on the right, what is:
N(a) ?
N(f) ?
N(b) ?
(MIT_ESD!
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Order and Size

e The number of vertices in a graph G is the
order of G

e The number of edges in G is the size of G

e The order of G (as shown on the right) is

e Thessize of G (as shown on theright)is

e Agraph of size O is called an empty graph -
no two vertices are adjacent.

e A graph in which every pair of two vertices
are adjacent is called a complete graph

MIT_ESD
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Ref [3
G
b
d
C /
e
g



Multi-Graphs

So far we’ve considered only zero or one
edge between a pair of vertices

What if there are more edges?

Consider Euler’s graph for the
Koningsberg problem

The graph K is a multigraph
A multigraph has finite number of edges

(including zero) between any two
vertices

So all graphs are multigraphs but not Image by MIT OpenCourseWare.
vice versa

No loops are allowed in a multigraph —a
vertex cannot connect to itself

m II I- —_—
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Adjacency Matrix

* In addition to set representation, we can Ref [4]
use matrices to represent multigraphs

 We can create an adjacency matrix A
such that its each (i,]) entry is the number
of edges that exist between vertex i and
vertex j

 For a multigraph G of order n with A=
V(G)={vy, V,, V3..V, }, the adjacency matrix
of Gisnxn -

° A(G) = [aij]nxn

* where ay, the (i,j)-entry in A(G) is tféere agetthree
edges between

the number of edges joining v; and v; v.. and v
—— 1T
11
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Exercise

Draw G when G(A) is:

0102 3
1012 2
A=[0 1 0 1 1
2 210 1
32 1 1 0]

Why are the elements of the diagonal always zero?
What is the order (n) of G?
What is the size (m) of G?

How can you determine m from A?

MIT_ESD
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Incidence Matrix

The Incidence Matrix, B is a binary, n X m
matrix, where b;, = 1 if v; is an endvertex of
edge e, otherwise it is zero.

The incidence matrix contains more
information than an adjacency matrix since
it distinguishes between edges.

Each column has two ones if each edge has
two distinct vertices (i.e. when there are no
loops and the graph is connected).

MIT_ESD
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Ref [4]
V V
1 e4 4
e, € e5e6 €7

1101000
. 1110000
10 010111
0 00111 1]
\ J

v, Is an endvertex of e,, e, e, and e,



Vertex Degrees

e GivenavertexvinG, the degree of vin G,
denoted by d; (v), is defined as the number
of edges incident with v.

 Which vertex has the highest degree in the
Koningsberg problem? What is its degree?

* In a multigraph, the sum of the degrees of
its vertices is twice its size (number of
edges).

Image by MIT OpenCourseWare.

B
Zd(Vi)sz A C
=1

This is also known as the ‘Hand Shaking Theorem’

A vertex with the highest degree is called a
hub in a graph (or network).
MIT_ESD IMir
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Degrees from A and B

Given an adjacency matrix, A, can we
determine d(v;) ?

Can we determine d(v;) from incidence
matrix, B?

MIT_ESD
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V, e, V,
e, €, 6566 €7
Vs, €3 V3

02 0 1
A201O
010 3

1 0 3 0
1101000
. 1110000
1001 0111
0 001111




Complete Graphs

|

What is the total number of edges, m,
in a complete graph?

For a graph of order n (i.e. n vertices),
what is the number of total possible
combinations if we pick two vertices at
a time?

Think Combination — out of n objects,
how many combinations are possible if
we pick k objects at a time?

This is given by the Binomial coefficient:

n] ~n(n-1L (n—k+1)  n

k) k(k-DL1  KkI(n—k)
k<n

m

MIT_ESD
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Ki: O Ky: 1 Ki3: 3 K4: 6
@ o—0
K5: 10 KG: 15

size m is:

|

n
2

|

nt_n(h-1)(n-2)

Image by MIT OpenCourseWare.
For a complete graph with order n, K, the

“2A(n-2)

2!(n —2)

n(n-1)
2




Paths and Cycles

Paths and cycles are two classes of graphs. Pl O I:’2 Q—Q

Forn =1, the path P, is a graph of order n and size

n-1 whose vertices are vV,, V,, ...V, , and whose
, 1» "2 n P, O—O—0O—0O
edges are v,v,,, fori=1,..., n-1. ~ ~

For n = 3, the cycle C is a graph of order n and

size n whose vertices can be labeled by v,, v,, ...v,

and whose edges are v,v,, and v,v,,, fori=1,2,n-1.

The cycle C, is also referred to as an n-cycle. C,

Note every cycle has vertices with the same
number of degree: 2, and the number of edges in
the cycle = number of vertices Cy Cs

m II I- —_—
Massachusetts Institute of Technology
Engineering Systems Division



Walks

In a graph, we may wish to know if a route exists
from one vertex to another- two vertices may not
be adjacent, but maybe connected through a
sequence of edges.

A walk in a graph G is an alternating sequence of
vertices and edges :

Vo €y Vy €1 VooV g €1 Vi

Image by MIT OpenCourseWare.

where k > 1 and e, is incident with v,and v,,, for
eachi=0,1,..k-1 Ce;Be,De; A

The vertices and edges need not be distinct what is the length of this walk?

The length of the walk W is defined as ‘k” which is
the number of occurrences of edges in the
sequence.

m II I- —_—
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Trails and Circuits

A trail in G is a walk with all of its edges e, e,
..., distinct

A path is G is a walk with all of its vertices v, v,
..V distinct

For vertices u and vin G, a u, v-walk (or trail,
path etc.) is one with initial vertex u and final
vertex v.

A walk or trail of length at least 1 is closed if
the initial and final vertex are the same. A
closed trail is also called a circuit.

A cycle is a closed walk with distinct vertices
except for the initial and final vertex, which
are the same.

MIT_ESD
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/ walks

trails

T~

closed

\/ walks

circuits

paths

cycles

Ref [4]



Examples

e The walk tis a trail of length 5: e The walk p is a path of length 4:
t=(vy, €, V3, €3 Vy, €,V,, €, V5, €7, V,) P =(Vy, €y V3, €4 Vy, g, Vs, €7, V)

t is not a path since v, appears twice

Massachusetts Institute of Technology
Engineering Systems Division



Examples

e The walk cis a cycle of length 4:

C=(V3, €4, V,, €g, Vc, €, V,, €, Vs)

Ref [4]
R
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Connectivitv

e Agraph G is connected if every two
vertices in G are joined by a path.

e Agraphis disconnected if it is not
connected.

e A pathin G thatincludes every vertex in
G is called a Hamiltonian path of G.

e Acyclein G thatincludes every vertex in
G is called a Hamiltonian cycle of G.

* |If G contains a Hamiltonian cycle, then G
is called a Hamiltonian graph.

MIT_ESD
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Trees

A tree, T, is a connected graph that has
no cycle as a subgraph

A tree is a simple graph on n vertices-
a tree cannot have any loops or
multiple edges between two vertices.

T has n-1 edges and is connected.

A vertex v of a simple graph is called a
leaf if d(v) = 1.

Between every pair of distinct vertices
in T there is exactly one path.

Trees are useful in modeling
applications such as hierarchy in a
business, directories in an operating
system, computer networks.

MIT_ESD
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Ts

Image by MIT OpenCourseWare.
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Directed Graphs

A directed graph, or digraph G, consists of
directed edges (represented with arrows).

In a directed edge uv, the vertex u is called
the tail and vertex v is called the head of
the edge.

The indegree d*(v) of a vertex v is number
of directed edges having v as head.

The outdegree d*(v)of v is number of v,
directed edges having v as tail. v
2

For a digraph: v
n n 2
dd(v,)=D.d*(v,)=m Va

2 (v)=2d°(v) "

Massac husetts Institute o f Technology
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Weighted Graphs

e A connected graph G is called a

weighted graph if each edge e in G is Traveling Salesman Problem

assigned a number w(e), called the A traveling salesman wants to make a
weight of e. round trip through n cities, c;..c;..C,..

He starts in c,, visits each remaining city c;
exactly once, and ends in ¢, where he

e Depending on the application, the started the trip.
weight of an edge may be a measure of
physical distance, time consumed, cost, IT he knows the distances between every
capacity, or some other quantity of pair of cities ¢; and c;, how should he plan
interest his round trip to make the total round-trip

distance as short as possible?

* Given a walk Win a weighted graph, The problem of finding the shortest route is that of
the weight of W, is the sum of the finding a minimum weight Hamiltonian cycle of the

weights of the edges contained in W. weighted complete graph K.

Massachusetts Institute of Technology 25
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Application Example:
Project Graphs and Critical Paths

A project consists of a collection of tasks.
Each task has an associated completion time.

A task may depend on other tasks to be completed
before it can be initiated.

A project graph can be constructed, such that the
vertices represent tasks, and edges represent task
dependencies.

The total time of a path is the sum of completion
time of each task on that path.

The path with longest total time is the critical path

The critical path determines project completion
time.

MIT_ESD
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Job# | Immediate | Time
Predecessors [min]

A 0]

B A 10

C A 20

D B,C 30

E B,C 20

F E 40

G D,F 20

H G 0




k-regular graphs

A graph g is called k-regular if d(v,) = k for all 5
v, in G.

Cs
The null graph is a 0-regular graph.

2-Regular 3-Regular
The cycle C, is a 2-regulargraph. | AL A~
A complete graph is an (n-1) regular graph. @
4-Regular E 6-Regular
Image by MIT OpenCourseWare.
R Phir



Distance

* The distance from vertix v, to v,, d(v,, v,) L Ref [3]
in a connected graph G is the smallest
length of all v, - v, paths in G. Y

from one vertex to another is also called

()

 The shortest path through the network I
U

the ‘geodesic path’. y

Xx-w path | length

e There maybe and often is more than one
geodesic path between two vertices.

d(x, w) =

Massachusetts Institute of Technology
Engineering Systems Division



Diameter

 The greatest distance (longest path)
between any two vertices in a graph G is v
called the diameter of G.

 The diameter is the longest geodesic path
between any two vertices in the network. !

 The diameter of a graph is an indication of

how far apart are its vertices.
Diameter of our World R,
e We may model our world as a collection of

people — each person is a vertex (hode) and

two people (vertices) are connected if they

are acquainted. What will be the diameter of

this graph (or social network)?

Image by MIT OpenCourseWare.
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Small World Networks

Small world networks are ‘highly clustered’,
yet have small characteristic path lengths.

Neural networks, power grids, collaboration
graphs of film actors, and many other systems
form ‘small world’ networks.

In small world networks there are ‘short cuts’
that shorten the distance between vertices.

Signal propagation speed is enhanced in such
systems; rumors can spread quickly, the
number of legs in an air or train journey is
small, infectious diseases spread more easily
in a population etc.

MIT_ESD
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Gt B

Regular Small-worid Random

Image by MIT OpenCourseWare.

Duncan J. Watts & Steven H. Strogatz, “Collective
dynamics of ‘small world’ networks’, Nature, Vol. 393,
4 June 1998
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