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Basic Control Structures

You've probably seen these. ..

while

int 1 = 0;
do...while while(i++ < 3){
printf(“%d ”, 1i);

for

}

=>1 2 3

if [...else if], [...else]




Basic Control Structures

You've probably seen these. ..

WhILE int i = 0;
do...while do {

printf(“%d “, 1);
o } while(i++ < 3);

if [...else if], [...else]

=> 0 1 2 3




Basic Control Structures

You've probably seen these. ..

Whle // C99-style

do...while for(int 1 = 0; 1 < 3; ++1){
printf(“%d “, 1);

o }

if [...else if], [...else]

=> 0 1 2




Basic Control Structures

You've probably seen these. ..

. int 1 = 9;
WhIlE if(i < 3){
do. while printf(“It sure is.”);
} else if(i == 3){
for printf(“Nope.”’);
if [...else if], [...else] } else {

printf(“Still nope.”);

}
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The goto statement in detail

e Syntax:
goto label;
... where label refers to an earlier or later labelled section of code.

o Target label must be in the same function as the goto statement.

e Notorious for creating hard-to-read code, but the concept is critical
to how computers operate.

16

Thursday, January 10, 13




Thursday, January 10, 13




Variables and constants

inta=1; const int b = 1;
a=2;// cool 5

// error:
read-only variable
1s not assignable
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static Variables

Static variables retain their value
throughout the life of the program.

void foo(){ for(int 1 = 0; 1 < 5; ++1i){
int count = ©; foo();
printf("%d ", count++); }

Output:0 1 2 3 4

19

Thursday, January 10, 13




Functions in Variables

We'll examine part of this syntax in more depth in later lectures.

int foo(int a, int b){ int (*func)(int, int) = &foo0;
return a + b; int result = func(2, 2);
1 printf("%d ", result); // 4
int bar(int c, int d){ func = &bar;
return c - d; result = func(2, 2);

h printf("%d", result); // ©
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SCO Pe A variable has a scope in which it is said to be defined.

void bar(){ void foo(){
int a = 0; int a = 9;
if(3 > 0){ }
int b = 0;

b = 2; // okay
}
a++; // okay
; // error:

// use of undeclared
// 1dentifier 'b’

In foo and bar,
ais 'in scope’ for
the entire function.
b is "in scope” only within
the if statement's block in bar.
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Anonymous Blocks

Anonymous blocks demonstrate the concept of block scope.

void foo(){
{ int a = 0; }

1
double a = 3.14; // no problem!
{
char * a = "3.14"; // no problem!
}
}

// no 'a’ defined 1n this scope

h 23
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Program memory, simplified...

int a = 0;

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
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(Common)

SO urces Avoid these situations if you can help it!

e Uninitialized variables:
int 1;
printf(“%d”, 1i);
e QOut-of-bounds array access:

char reversed[20];
char out_of bounds = reversed[’1];

e Variables passed out of their defining function’s scope.

e malloc (coming up in a later lecture)
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