Thursday, January 10, 13

Thursday, January 10, 13

Thursday, January 10, 13

Basic Control Structures

You've probably seen these. ..

while

int 1 = 0;
do...while while(i++ < 3){
printf(“%d ”, 1i);

for

}

=>1 2 3

if [...else if], [...else]

Basic Control Structures

You've probably seen these. ..

WhILE int i = 0;
do...while do {

printf(“%d “, 1);
o } while(i++ < 3);

if [...else if], [...else]

=> 0 1 2 3

Basic Control Structures

You've probably seen these. ..

Whle // C99-style

do...while for(int 1 = 0; 1 < 3; ++1){
printf(“%d “, 1);

o }

if [...else if], [...else]

=> 0 1 2

Basic Control Structures

You've probably seen these. ..

. int 1 = 9;
WhIlE if(i < 3){
do. while printf(“It sure is.”);
} else if(i == 3){
for printf(“Nope.”’);
if [...else if], [...else] } else {

printf(“Still nope.”);

}

Thursday, January 10, 13

Thursday, January 10, 13

Thursday, January 10, 13

Thursday, January 10, 13

Thursday, January 10, 13

Thursday, January 10, 13

Thursday, January 10, 13

The goto statement in detail

e Syntax:
goto label;
... where label refers to an earlier or later labelled section of code.

o Target label must be in the same function as the goto statement.

e Notorious for creating hard-to-read code, but the concept is critical
to how computers operate.

16

Thursday, January 10, 13

Thursday, January 10, 13

Variables and constants

inta=1; const int b = 1;
a=2;// cool 5

// error:
read-only variable
1s not assignable

18

static Variables

Static variables retain their value
throughout the life of the program.

void foo(){ for(int 1 = 0; 1 < 5; ++1i){
int count = ©; foo();
printf("%d ", count++); }

Output:0 1 2 3 4

19

Thursday, January 10, 13

Functions in Variables

We'll examine part of this syntax in more depth in later lectures.

int foo(int a, int b){ int (*func)(int, int) = &foo0;
return a + b; int result = func(2, 2);
1 printf("%d ", result); // 4
int bar(int c, int d){ func = &bar;
return c - d; result = func(2, 2);

h printf("%d", result); // ©

20

Thursday, January 10, 13

Thursday, January 10, 13

SCO Pe A variable has a scope in which it is said to be defined.

void bar(){ void foo(){
int a = 0; int a = 9;
if(3 > 0){ }
int b = 0;

b = 2; // okay
}
a++; // okay
; // error:

// use of undeclared
// 1dentifier 'b’

In foo and bar,
ais 'in scope’ for
the entire function.
b is "in scope” only within
the if statement's block in bar.

¥

Thursday, January 10, 13

27

Anonymous Blocks

Anonymous blocks demonstrate the concept of block scope.

void foo(){
{ int a = 0; }

1
double a = 3.14; // no problem!
{
char * a = "3.14"; // no problem!
}
}

// no 'a’ defined 1n this scope

h 23

Thursday, January 10, 13

Thursday, January 10, 13

Program memory, simplified...

int a = 0;

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

25

(Common)

SO urces Avoid these situations if you can help it!

e Uninitialized variables:
int 1;
printf(“%d”, 1i);
e QOut-of-bounds array access:

char reversed[20];
char out_of bounds = reversed[’1];

e Variables passed out of their defining function’s scope.

e malloc (coming up in a later lecture)

26

Thursday, January 10, 13

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Introduction to C and C++
IAP 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

