Nanomaker

Lab #3: Light Emitting Diode (LED)

Display Technology Lighting Technology Electroluminescence

Display Technology

Image by MIT OpenCourseWare.

Cathode Ray Tube Displays

- Electrons beam boiled off a metal by heat (thermionic emission) is sequentially canned across a phosphor screen by magnetic deflection.
- The electrons are accelerated to the screen acquiring energy and generate light on reaching the screen (cathodoluminescence).

Plasma Displays

- Electrons are accelerated by voltage and collide with gasses resulting in ionization and energy transfer
- Excited ions or radicals relax to give UV photons which cause hole-electron generation in phosphor and visible light emission

Liquid Crystal Displays

 Liquid Crystals rotate the plane of polarization of light when a voltage is applied across the cell

Display Technology
Lighting Technology
Electroluminescence

Incandescent, Fluorescent and LED

	LED	Fluorescent	Incandescent
Life Span	50000 hrs	8000 hrs	1200 hrs
Heat Emission	3.4 btu/hr	30 btu/hr	85 btu/hr
Power	0.01 Watt/ Lumen	0.02 Watt/ Lumen	0.075 Watt /Lumen
CO2 Emission	15 pounds/yr	35 pounds/yr	150 pounds/yr

<u>Incandescent:</u> heating a metal filament wire to a high temperature until it glows <u>Fluorescent:</u> gas-discharge lamp that uses electricity to excite mercury vapor <u>LED:</u> recombination of electrons and holes, known as electroluminescence

Difference Spectra

These images are in the public domain.

incandescent

Display Technology Lighting Technology Electroluminescence

Electroluminescence

- Electroluminescence is the result of recombination of electrons and holes in a material, usually a semiconductor.
- The excited electrons release their energy as photons light.

Electroluminescence

Electrons and holes may be separated either by

- excitation by a strong electric field (10⁸ V/m) (light tape)
- doping the material to form a p-n junction (LED)

Photo courtesy of tudedude on Flickr.

Light Tape

(1) Tunnel electrons from interface states, (2) acceleration of electrons to high energies, (3) impact excitation or impact ionization of the luminescent center, and (4) de-excitation of the excited electron by photon generation

Light Emitting Diode

Image by MIT OpenCourseWare.

When a light-emitting diode is forward biased, electrons are able to recombine with electron holes within the device, releasing energy in the form of photons.

Diode

Light Emitting Diode

- Light emitting diode (0.7-5V turn-on)
- High power for lighting
- Need to limit current

Photodiode

- Photons generate electron-hole pairs
- Apply reverse bias voltage to increase sensitivity
- Key specs
 - Sensitivity
 - Spectral response
 - Reverse break voltage
 - Dark current

Conduction

Photodiode

- 1. Photon can excite an electron from Valence Band (ground state) to Conduction Band (excited state)
- 2. The externally applied bias (that generates the electric field in the semiconductor) will separate the photo-generated electron and hole
- 3. The electron and a hole will reach the metal contacts, be collected by the bias battery, and be measures as a photocurrent.
- 4. If more photons are absorbed by the semiconductor, more current we will measured

Conclusions

• Diode

$$I = I_s(e^{eV/kT} - 1)$$

- Electroluminescence
 - High voltage
 - Lower voltage + doping

MIT OpenCourseWare http://ocw.mit.edu

6.S079 Nanomaker Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.