Lab #4 Organic LED

The OLED for Today

Image by MIT OpenCourseWare.

Light is emitted when Ru+ and Ru3+ combine to form two Ru2+ complex ions, one of which is in an excited state. Excited ruthenium(II) complex ions emit light via phosphorescence.

Image by MIT OpenCourseWare.

Steps

Identify the conducting side of a tin oxide-coated piece of glass by using a multimeter to measure resistance.

Use a cotton swab or computer fan to spread a thin layer of $[Ru(bpy)_3](BF_4)_2$ PVA solution on the glass. keep some uncoated regions by taping one edge.

Evaporate using a hot plate for several minutes depending on the thickness.

Photograph of a hot plate removed due to copyright restrictions.

Steps

Prepare a mask using a piece of duct tape on aluminum foil and punching a 2/16 inch hole.
Use a cotton swab to paint through the template with liquid gallium-indium alloy to add an active metal electrode.

Touch the positive lead of a 4.5-volt power supply to the tin-oxide glass. Gently touch the negative lead to the gallium-indium.

Q1: Is the circuit a diode? What happens if you reverse the polarity of the applied voltage?

Q2: Light!!! What is the wavelength???

Q3: How long does your OLED last? What could cause reduction of lifetime?

MIT OpenCourseWare http://ocw.mit.edu

6.S079 Nanomaker Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.