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Narrowband LNA Design for Wireless Systems

From Antenna PC board L _
and ;B:jc;ndpass trace —— To Mixer
er O T Zo J_) I Interface LNA

" Design Issues
= Noise Figure — impacts receiver sensitivity
= Linearity (IIP3) — impacts receiver blocking performance

= Gain - high gain reduces impact of noise from components
that follow the LNA (such as the mixer)

= Power match —want Z,, = Z_ (usually = 50 Ohms)
= Power — want low power dissipation

= Bandwidth — need to pass the entire RF band for the
intended radio application (i.e., all of the relevant channels)

= Sensitivity to process/temp variations — need to make it
manufacturable in high volume
M.H. Perrott MIT OCW



Our Focus in This Lecture

From Antenna PC board L _
and ;B:jc;ndpass trace —— To Mixer
ter O T Zo J_) I Interface LNA

" Designing for low Noise Figure

" Achieving a good power match

" Hints at getting good IIP3

" Impact of power dissipation on design
" Tradeoff in gain versus bandwidth

M.H. Perrott MIT OCW



Our Focus: Inductor Degenerated Amp

Source -1

--------------------------------------

" Same as amp in Lecture 7 except for inductor degeneration

= Note that noise analysis in Tom Lee’s book does not include
inductor degeneration (i.e., Table 11.1)
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Recall Small Signal Model for Noise Calculations
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Key Assumption: Design for Power Match

Lo 0t

VWA M,

L
Vbias 9 deg

" Input impedance (from Lec 6)

Zin(s) = —

S(Ldeg + LQ) + Ldeg
SCUgs gs

Real!

" Set to achieve pure resistance = R at frequency w,
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Process and Topology Parameters for Noise Calculation

Source -_

......................................

" Process parameters
= For 0.18u CMOS, we will assume the following

1
c=—jO.55,‘fy=3, § =2y =6, g—m=§ é‘xd:OBQ‘

Jdo
" Circuit topology parameters Z, and Z

deg
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Calculation of Z

Source

I—deg
gs SCQS 1 _l_ ngdeg jwocgg 1 _l_ gm]woLdeg

ij(Ldeg _I_ Lg) _I_ RS

. ij(Ldeg + Lg) + Rs
ij(Qdeeg + RSCQS)
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Calculation of n

Source —_
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Calculation of ngw

" By definition (Q _ . Ly + Ldeg))

Zagsw = WoCqsZ —
g.Sw WolrgsZigs woCgs2Rs 2R
® Calculation |
jwo(Lgeg + Lg) + Rs

jwo(gdeeg _I_ RSCQS)
- jw%CQS(Ldeg + Lg) + wngsRS
jwo(gdeeg + Rscgs)

— J1+1/(2Q)
jwo(gdeeg + Rngs)

_ i1+ 1/(2Q)
j’wngs((gm/Cgs)Ldeg —+ Rs)
j14+1/(2Q) _ j1+1/(2Q) _

1
= - . —(2Q—7)
JwoCys(Rs + Rs) 71/Q 2
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Calculation of Output Current Noise

" Step 3: Plug in values to noise expression for i_,

-2
ang

Af
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= % (1112 + 2Re {—jlelxan” Zosuw} + x| Zgsul?)

1 1 .
where n = 5, ngw — E(QQ - .7)
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ang

Af
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Compare Noise With and Without Inductor Degeneration

Source -_

" From Lecture 7, we derived for L, =0, w,2=1/(L,C )
o 2
ang 2
Ar = g (1 2lexa+x3(Q* + 1)

" We now have for (g,,/C )Ly, = Rs, W,2=1/((L, + Ly )Cy)
indg _ 121 1-2 204Q° +1
A—f_A—fZ( — 2|e|xqg + xg(4Q° + ))
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Derive Noise Factor for Inductor Degenerated Amp

Source _

......................................

" Recall the alternate expression for Noise Factor derived in

Lecture 8
. 5
. total output noise power _ Ynout(tot)
~ output noise due to input source ;2
nout(in)

" We now know the output noise due to the transistor noise

= We need to determine the output noise due to the source

resistance
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Output Noise Due to Source Resistance

Source -

--------------------------------------

I—deg
1 . dm
Ly, = + JwO(Ldeg + Lg) + —Ldeg = R
JWol gs Cgs
= Ugs — ) = : — | — | éns
RS + Zzn J’U]OCQS QRS jwocgs ]
. . Q\___ 25
= lnout = gm 7 €ns - nout — (QmQ)
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Noise Factor for Inductor Degenerated Amplifier

- 2 727,3 . A 2 A
Noise Factor = (gm@)”e +¥9/ J =1+ tdg/ f_
(ng)Qens (ng)QG%S

4kTv940(1/4)(1 — 2c|xq + x3(4Q° + 1))

1+

(ng)24kTRs

1 ddo 1 . 2 2
1+(QmQRs> g (Qm) 20 (1 2lc|xq + (4Q° + 1)Xd>

QwORSCQS 9do 1 . 2 2
N m—

(s gm

_ 1_|_(wo) N (gdo) 2162 (1= 2lclxa + (4Q% + 1)x3)

Noise Factor scaling coefficient
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Noise Factor Scaling Coefficient Versus Q

M.H. Perrott

Noise Factor Scaling Coefficient Versus Q for 0.18 u NMOS Device

7

6.5

Noise Factor Scaling Coefficient

Achievable values as

~ a function of Q under

the constraints that

| ‘ = W
I J(Lg*Laeg)Cqs
Can |
‘ L =R.
i Cgs 497 s
Note:
=1
| 2RsWngs
15 ' '. ' 35 4 45
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Achievable Noise Figure in 0.18. with Power Match

" Suppose we desire to build a narrowband LNA with
center frequency of 1.8 GHz in 0.18u CMOS (c=-j0.55)
= From Hspice —at V =1 V with NMOS (W=1.81, L=0.18}1)
= measured g, =871 uS, C, = 2.9 fF
_gm _ 871x107°
T Cys 2.9 x10°15
Wo 211.8e9 1

— ~

wy  2747.8¢9  26.6

= Wy = 27 (47.8GHz)

=

= Looking at previous curve, with Q ~ 2 we achieve a Noise
Factor scaling coefficient =~ 3.5

1
= Noise Factor~1+ ——35~1.13
26.6

— Noise Figure = 10l0g(1.13) ~ 0.53 dB
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Component Values for Minimum NF with Power Match

" Assume R, =50 Ohms, Q=2,f = 1.8 GHz, f, = 47.8 GHz
= Cg calculated as

1
Q —
2R5wocgs
= Cgs = 1 = 1 —‘442fF ‘
9 T 2RaweQ  2(50)271.8¢9(2)
= Lgeq calculated as
e R 50 ‘ ‘
~—Lj., = Rs = Lg.,=—= = 10.17nH
Cgs 29— 7% 99 Wy T 2n47.8€9
= L, calculated as
- = L 1 L
pu— wO g = — — d
\/(Lg + Lieg)Cys wgClys -
1
= L — 0.17e-9 = ‘17.571]{‘

I (271.8€9)2442¢-15
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Have We Chosen the Correct Bias Point? (Vs =1V)

Vgs: 9m» @nd gq, versus Current Density for 0.18uNMOS

" Note:
M.H. Perrott
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lIP3 is also a function of Q
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Calculation of Bias Current for Example Design

" Calculate current density from previous plot

" Calculate W from Hspice simulation (assume L=0.18 um)

442 FfF

Cos =2.9fF for W = 1.8um = W =
gs / pT 20fF

1.8um = 274um

= Could also compute this based on C_, value
® Calculate bias current

Inias = Tgen W = (LT5uA/ um) (274 um,) z‘ 48mA ‘

= Problem: this is not low power!!

M.H. Perrott MIT OCW



We Have Two “Handles” to Lower Power Dissipation

" Key formulas Tyias = LgenW
F= 1+(Z:) Y (zfn) ;Q (1= 2lelxa + (4Q% + 1)x7)
" Lower current density, | .,
= Benefits
Lﬁ lower power, lower Ido ratio
= Negatives .
= lower IIP3, lower f;
" Lower W
= Benefit: lower power
= Negatives
= lower Cys = EWLCM = higher Q = !
3 woCgs2Rs

= higher F (and higher inductor values)
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First Step in Redesign — Lower Current Density, |

en

M.H.

Perroftt

>
&)

Vgs: Im and gy, versus Current Density for 0.18uNMOS

New bias
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" Need to verify that IIP3 still OK (once we know Q)
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Recalculate Process Parameters

" Assume that the only thing that changes is g,.,/9,, and f,
= From previous graph (l,., =100 p A/l m)

78 5 >
Im ~0.68 = yg= 20— =0.63/= ~ 0.43
9do 1.15 9do \ OV 5

_gm _ 0.78mS
T Cys | 2.9fF
" We now need to replot the Noise Factor scaling
coefficient
= Also plot over a wider range of Q

. Wo 9do\ 1
e

Noise Factor scaling coefficient

Wy = (27)42.8GHz
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Update Plot of Noise Factor Scaling Coefficient

M.H. Perrott

Noise Factor Scaling Coefficient Versus Q for 0.18 H NMOS Device
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Second Step in Redesign — Lower W

B Recall

" We previously chose Q = 2, let’s now choose Q = 6

bias

Ibias — [denW — Iden

2
Cgs — gWLCOQj,

=

can be related to Q as

3

Q =

1

wocQSQRS

3

1

Ibias X =

1

= Cuts power dissipation by a factor of 3!
= New value of W is one third the old one

M.H. Perrott

= W

_ 2T4fF

z‘91,um‘

B J—
2LC, 2T T L wo2 RsQ
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Power Dissipation and Noise Figure of New Design

" Power dissipation
Ivias = Tgen, W = (LOOuA/um)(91pum) = 9.1mA

= At 1.8 V supply

— Power = (9.1mA)(1.8V) =‘16.4mW‘

" Noise Figure
= f, previously calculated, get scaling coeff. from plot

Wo 2711.8e9 1

wy  2m42.8¢9  23.8’

{

scaling coeff. =~ 10

1
= Noise Factor~ 1+ ——10~1.42
23.8

= Noise Figure = 1010g(1.42) x‘ 1.52 dB ‘
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Updated Component Values

" Assume R, =50 Ohms, Q=6, f, = 1.8 GHz, f, = 42.8 GHz
= Cg calculated as

1
Q - 2R5wocgs
IR HRE S S Pverry
P 2RawoQ  2(50)271.8e9(6)
= Lgeq calculated as
Jm R 50 ‘ ‘
—L = Rs = L = — = =10.19"H
Cgs de9 = 7 99wy T 2742.8€9
= L, calculated as
1 = L 1 L
pu— wO g = — - d
\/(Lg + Lieg)Cys wgClys -
1

= L

D > — 0.19¢-9 =‘ 53nH‘
(271.8€9)2147¢-15
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Inclusion of Load (Resonant Tank)

" Add output load to achieve voltage gain
= Note: in practice, use cascode device éLL %RL —C,
= We're ignoring C, in this analysis —V,,

M.H. Perro MIT OCW



Calculation of Gain

= Assume load tank resonates
at frequency w, éLL %RL

M.H. Perrott MIT OCW



Setting of Gain

|Gain| = gmRQ

Parameters g, and Q were set by Noise Figure and IIP3
considerations

= Note that Q is of the input matching network, not the
amplifier load

R, is the free parameter — use it to set the desired gain

= Note that higher R, for a given resonant frequency and
capacitive load will increase Q, (i.e., Q of the amplifier
load)

* There is a tradeoff between amplifier bandwidth and gain

= Generally set R, according to overall receiver noise and
lIP3 requirements (higher gain is better for noise)
= Very large gain (i.e., high Q) is generally avoided to
minimize sensitivity to process/temp variations that will shift

the center frequency
M.H. Perrott MIT OCW



The Issue of Package Parasitics

Noise +
Voltage I—bondwire2
: Noise
L, R, ==C, Current
Equivalent
.. Source ¢ >
N ‘- Vot Mixer and
R : Lext I-bondwwe3 Other Circuits
Al 'm'm——| M,

Vin g |
ELdeg Noise

Current

-------------------------------------

" Bondwire (and package) inductance causes two issues
= Value of degeneration inductor is altered

= Noise from other circuits couples into LNA
M.H. Perrott MIT OCW



Differential LNA

éLL %RL —C, C == RL% LL%
*— —e

out out ' L

bies @

is now much better controlled

" Advantages
= Value of L
= Much less sensitivity to noise from other circuits

" Disadvantages
= Twice the power as the single-ended version

= Requires differential input at the chip
M.H. Perrott MIT OCW
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Note: Be Generous with Substrate Contact Placement

To amplifer
To Leg To L Ioa%
GND GND
© o Substrate Substrate e ©
e o \ Contact / \ Contact )
@@ e o o o °°©
°© o, o le o°, Y ©
©) © o © e ©)
o©%e o © ® o © %0
@e e@@ © VVVYV VVVV S @@@ o
Hot electrons and Hot electrons and
other noise other noise

" Having an abundance of nearby substrate contacts
helps in three ways

= Reduces possibility of latch up issues
= Lowers R, and its associated noise
= Impacts LNA through backgate effect (g,;,)

= Absorbs stray electrons from other circuits that will
otherwise inject noise into the LNA

" Negative: takes up a bit extra area
M.H. Perrott MIT OCW



Another CMOS LNA Topology

" Consider increasing g,, for a given current by using
both PMOS and NMOS devices

= Key idea: re-use of current

(1/2)W/|_|

gm1+gm2/> Tl Id BAZ

R lld » / lldlz lld/z » o_.gm1+gm2 lld/z
—

o/— 0—'—”:‘LI\/I1 _|1 lldlz

W/L

(1/2)WIL (1/2)WIL (1/2)T/|.”§ﬂw1
" |ssues

= PMOS device has poorer transconductance than NMOS
for a given amount of current, and f, is lower

= Not completely clear there is an advantage to using this
technique, but published results are good

= See A. Karanicolas, “A 2.7 V 900-MHz CMOS LNA and
Mixer”, JSSC, Dec 1996

M.H. Perrott
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Biasing for LNA Employing Current Re-Use

Matching
Network

---------

" PMOS is biased using a current mirror
" NMOS current adjusted to match the PMOS current

" Note: not clear how the matching network is achieving
a 50 Ohm match

= Perhaps parasitic bondwire inductance is degenerating

the PMOS or NMOS transistors?
M.H. Perrott MIT OCW



Broadband LNA Design

PC board
High Speed trace
Brogdband 46) Z, )_> rac:-(fage —»| LNA
Signal T T nterface

" Most broadband systems are not as stringent on their
noise requirements as wireless counterparts

" Equivalent input voltage is often specified rather than a
Noise Figure

" Typically use a resistor to achieve a broadband match
to input source

= We know from Lecture 8 that this will limit the noise figure
to be higher than 3 dB

" For those cases where low Noise Figure is important,
are there alternative ways to achieve a broadband
match?
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Recall Noise Factor Calculation for Resistor Load

Source
Source - &
R nRRs ...
Re — omeees —ww—( :
v+ ' €nRL
Vin Ci) % RL ¢ Vout R E Vhout
L

" Total output noise

2 _ R\’ Rs  \*=
Yoout(tot) = Rs + Ry €nRsT Rs + R; €nRL

" Total output noise due to source

2
2 _ Ry >
Ynout(in) — (Rs n RL) €nRs

Noise Factor

2 9 2
F=1+ £s \" ¢arr _ 14+ gl LAl 1_|_&
Ry ) &2 R; ) 4kTRs
M.H. Perrott
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Noise Figure For Amp with Resistor in Feedback

Source J\Ij\;w Source Ry
Rs l— - Rs e_nRs
WWA —_— WW—{(| +
Vin% A Vout incremental / Viou
Vo -+ ground

" Total output noise (assume 2 is large)
v%out(tot) ~ (_RRSf) 6727,]—'{5 + 6721Rf
" Total output noise due to source (assume A is large)
2
vgout(m) ~ (_Rif> €7 Rs
" Noise Factor
F%1+(RS)2%:1+(RS)24I§TRf=1+R3J

R e
M.H. Perrott / nhs




Input Impedance For Amp with Resistor in Feedback

Source !

enRs:
WW—(1 + )

Vnout

® Recall from Miller effect discussion that
A
1 — gain 14+ A

" If we choose Z,, to match R, then

Rf=(1+ A)Zy, = (1 + A)R,

" Therefore, Noise Figure lowered by being able to

' R
choose a large value for R;since . _ 4 B

Ry
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Example — Series-Shunt Amplifier

Rin Rout
RL
Rs |_> Rf 4J
Vx Vout
Vin ()
M1

Vbias g %R
1

" Recall that the above amplifier was analyzed in
Lecture 5

" Tom Lee points out that this amplifier topology is
actually used in noise figure measurement systems
such as the Hewlett-Packard 8970A

= It is likely to be a much higher performance transistor
than a CMOS device, though

M.H. Perrott MIT OCW
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