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Noise Factor and Noise Figure (From Lec 7)

-----------------------------------------------

Equivalent output
referred current noise

€ rs (assumed to be independenti
R : : of Z,, and Z))
P+ Linear,Time Invariant I
v () i, Circuit I e T e
Zn (Noiseless) Zout Z
" Definitions S
. SNR,;

Noise Factor = F = ——%
SNR

Noise Figure = 10 log(Noise Factor)
" Calculation of SNR;, and SNR_

2.2 2
o< Ve V4 7
SNR;, = al7v, = " wherea = -
|Oé|2€$bRs efrzst RS + Zin
2 2.2 .
al< |G V- 7
SNR put = — o] |2 =" Where Gy = out
|a| |Gm| enRs +7’nout Y
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Alternative Noise Factor Expression

-----------------------------------------------

Equivalent output
. referred current noise .
. " (assumed to be independent

s of Z,;and Z))
: + | Linear, Time Invariant I :
& e e T

Z, (Noiseless) Zout Z

----------------------------------------------

" From previous slide

2 2 2
2.2
|O‘| nRs enRs |O‘|2|Gm|2 nRs _I_ Znout

® Calculation of Noise Factor
SNROW‘ |Oz|2|Gm|2 nRs

total output noise power

output noise due to input source
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Input Referred Noise Model

-----------------------------------------------

! Equivalent output N
' referred current noise .
&R ' (assumed to be independent
Rs :n Co of Z,,;and Z,)
: + | Linear,Time Invariant
Vin Ci) |_>: v, Circuit <_| [ |_> E liout
Zn ' (Noiseless) Zout zZ,
' ]
e isiisiisiisiisiieiaiaiaiaiaih .
I —(+ ;
I ' + | Linear,Time Invariant| .
i CTD iy Ys | i |_> vy Circuit L
l : Z, (Noiseless) :
' ]
Can remove the signal source I
since Noise Factor can be —
expressed as the ratio of total ‘ 's S
output noise to input noise l
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Input-Referred Noise Figure Expression

----------------------

N
—
E YS I E l iin,sczlo_BlJt
" We know that 5
. total output noise power — Yout(tot)
D

~ output noise due to input source o
outin
" Let’s express the above in terms of input short circuit

current B[22 ;2
. n,sc(tot) _ “in,sc(tot)

1R12:2 D
|51 Zz'n,sc(in) Zin,sc(m)

total input short circuit current noise power

- input short circuit current noise power due to input source
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Calculation of Noise Factor

----------------------

Y,
— &
E Ys i E l iin,s,c= IO_[;J’I
|

----------------------

" By inspection of above figure
2

= Zin,sc(tot) . 7% + |7/n + Ys€n|2
D - 2
Zm,sc(m) Us

" In general, e, and i, will be correlated
Z.n — /l;c + 7;1“ Whel’e Z.C — YC €n
= Y. is called the correlation admittance

. 713 + |7fu + (Yc + Ys)€n|2 . g‘F |Yc + Y3|2%
= F = — = 1+ —
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Noise Factor Expressed in Terms of Admittances

---------------------------

(1)
—T®
- - . lout
s Ys Ye ly l Iin,scz?
[ ]
p =14 at et Vil

" We can replace voltage and current noise currents
with impedances and admittances

62 7;2 ,&'2
— n - U _ S
“TapTAp Y AkTAf T AKTAS

Gu + |Ye + Ys|°Rn

Gs
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Optimal Source Admittance for Minimum Noise Factor

Gu + |Ye + Ys|°Ra
Gs
" Express admittances as the sum of conductance, G,
and susceptance, B

Gu + [(Ge 4+ G5)? + (B + Bs)?] Ry
Gs
" Take the derivative with respect to source admittance
and set to zero (to find minimum F), which yields

F=1+

F=1+

G
GSZ R_U_I_ngGopt BSZ _BC:BOPt

n

" Plug these values into expression above to obtain

Fﬁm::1+2Rn(¢g?4—Gg+{%)::1+2RMIQW+{%)
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Optimal Source Admittance for Minimum Noise Factor

G
Frin = 14+2Ry (\/Ru + Gg + Gc) at Gs = Gopt; Bs = Bopt
n

" After much algebra (see Appendix L of Gonzalez book
for derivation), we can derive

Rn
F = Fyp + G— [(GS — Gopt)2 + (Bs — Bopt)z}

S

= Contours of constant noise factor are circles centered
about (G, ,B,) in the admittance plane

= They are also circles on a Smith Chart (see pp 299-302
of Gonzalez for derivation and examples)

" How does (G,,,B,,) compare to admittance achieving
maximum power transfer?
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Optimizing For Noise Figure versus Power Transfer

Source SOUICE  ,cmmm e .
conductance susceptance: ©n :

= s —{| + E
' + | Linear, Time Invariant '
;CT) i. | Gs B, : i |_> v, Circuit : li°“t

Z, (Noiseless)

Signal

Source noise produced R R LR LR L R ’
by source conductance ’

Example source
admittance for maximum

power transfer BoptT Circles of constant
\ Noise Factor
Bt >

I, (Fmin @t the center)
max

— G,
Gmax Gopt

" One cannot generally achieve minimum noise figure if
maximum power transfer is desired
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Optimal Noise Factor for MOS Transistor Amp

" Consider the common source MOS amp (no
degeneration) considered in Lecture 7

= In Tom Lee’s book (pp. 272-276), the noise impedances
are derived as

J
Ge.=0 Be = wClys (1 — a|c|\/5> (corrected)
Y
1 202 (1 _ (]2
Ry = 1940 (Z>_ g, = W2 — )
9m &/ gm 59do

= The optimal source admittance values to minimize noise
factor are therefore

)
Bopt = —Be = —wClys (1 — ac| 57>

Gu 2 (5 2
Gopt = | — + G2 = awC —(1 —|c
opt R, + c gs \/57( | | )
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Optimal Noise Factor for MOS Transistor Amp (Cont.)

" Optimal admittance consists of a resistor and
inductor (wrong frequency behavior — broadband
match fundamentally difficult)

0
Bopt = — B, = —ngS (1 — (X|C|\/5y>

= If there is zero correlation, inductor value should be set
to resonate with C, at frequency of operation

" Minimum noise figure

Frin = 142Rn(Gopt+Ge) = 1+—3W<1 —|c?)

= Exact if one defines w, =g, /C
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Recall Noise Factor Comparison Plot From Lecture 7

Noise Factor Scaling Coefficient Versus Q for 0.18 u NMOS Device

8 T T T T T T

Achievabrle values as:r
a function of Q under:
. theconstraint that
c=-0 | 1

=W0

J LyCgs :

Noise Factor Scaling Coefficient
N

Cc=-0_____._ .
c =-j0.55
3 mmmEmm === ]
Note: curves Minimum across
2 NOIE BUIVES s _
meet if we ~allvalues of Q and
apgroxima’;e | 1 ‘ ‘
10 Q*+1xQ? JLCqs i;/=-11 |
0 | | | | | | [ [
1 2 3 4 5 6 7 8 9

M.H. Perrott

10

MIT OCW



Example: Noise Factor Calculation for Resistor Load

Source
Source - &
R nRRs ...
Re — omeees —ww—( :
v+ ' €nRL
Vin Ci) % RL ¢ Vout R E Vhout
L

" Total output noise

2 _ R\’ Rs  \*=
Yoout(tot) = Rs + Ry €nRsT Rs + R; €nRL

" Total output noise due to source

2
2 _ Ry >
Ynout(in) — (Rs n RL) €nRs

Noise Factor

2 9 2
F=1+ £s \" ¢arr _ 14+ gl LAl 1_|_&
Ry ) &2 R; ) 4kTRs
M.H. Perrott
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Comparison of Noise Figure and Power Match

Source
Source - &
R nRRs ...
RS ------ AASAﬁ <|+> ."
W . 1 : _ _I_
v+ : €nRL
Vin Ci) % RL ¢ Vout R E Vhout
. L
— — U i . | —_
Rs
F=1+4 —
Ry,

" To achieve minimum Noise Factor
RL — OO

" To achieve maximum power transfer
RL — RS
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Example: Noise Factor Calculation for Capacitor Load

Source

WW— : 5
: L+ ‘ : :
Vin @) , == C_ 1 + TCo  Viout

------

" Total output noise

2
2 _ ( 1/(sCp) ) 2.
nout(tot) Rs 4+ 1/(SCL) nis
" Total output noise due to source
2
2 ( 1/(sCp) ) 2.
nowt(tn) Rs+ 1/(sCp) nRs
" Noise Factor
_ 2 2 _
= vnout(tOt)/vnout(in) =1
MIT OCW
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Example: Noise Factor with Zero Source Resistance

---------------------

Source . ; R € Rl |
S o O
: P4 :
Vin @) i —-C, : Vout E T-CL:  Vnout
" Total output noise
2
2 _ 1/(sCp) 2
v = €nR
nout(tot) Rs + 1/(sCp) nRs

" Total output noise due to source

2 —
Ynout(in) = 0

® Noise Factor

— 2 2 —
= vn0ut(t0t)/vn0ut(m) - &°
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Example: Noise Factor Calculation for RC Load

Source
Source - B
R, NRS @ ieeeeaaa

[N R e —

: : I — 1+
: v+ ‘ : €nRL!

Vin @) + == C, %RL + Vout ' =Cy R + Vnout

. A L
. — ]

.............
..............

" Total output noise

:( 1/(sCp)IIR )262+( 1/(sCp)||Rs )262
Rs+1/(sC)IIRy) ™ \Rp+1/(sCp)lIRs) "

" Total output noise due to source

_ ( 1/(sCL)||RL )22

(&
Rs+1/(sCp)||R;) ™%
® Noise Factor > 5
Fe14(fe) SR — gy (B AL )y B
Ry &2 R; ) 4KkTR; Ry
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Example: Resistive Load with Source Transformer

Source

--------

1 1:N

---------

" For maximum power transfer (as derived in Lecture 3)

N2 = BL
Rs

IR
= R;, = Rs, Roywt = RLa Vour = R—va
S
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Noise Factor with Transformer Set for Max Power Transfer

Source

- 1:N= [/ —
® Total output noise

2 2
2 _ s Rr) n Ry 2
nout(tot) — Rs + R:\ Rs nRs R; + Ry nRL

" Total output noise due to source

2
p _ Rs R\ 2
Ynout(in) — Rs + Rs \| R €nRs

W|70CW

® Noise Factor
R, €2 R\ 4kTR
F=1+4_2nBL — q4 (2 L =|2 (=3dB)
Rpe2, R; ) 4kTR;
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Observations

RS e_nRs ______
w—(
— +
+ nRL
‘ V, - _ [RL
R _R _ VnOUt FVX
inT s = Rou=RL R, S
IN= [ e

" If you need to power match to a resistive load, you
must pay a 3 dB penalty in Noise Figure

= A transformer does not alleviate this issue

" What value does a transformer provide?

= Almost-true answer: maximizes voltage gain given the
power match constraint, thereby reducing effect of
noise of following amplifiers

= Accurate answer: we need to wait until we talk about
cascaded noise factor calculations

MIT OCW



Nonlinearities in Amplifiers

" We can generally break up an amplifier into the

cascade of a memoryless nonlinearity and an input
and/or output transfer function

Memoryless

Ry Nonlinearity Lowpass

Filter
Vout

\Id R,
3 ' / 4 RPN
Vin p— CL

o,

" Impact of nonlinearities with sine wave input
= Causes harmonic distortion (i.e., creation of harmonics)

" Impact of nonlinearities with several sine wave inputs

= Causes harmonic distortion for each input AND
intermodulation products

M.H. Perrott MIT OCW



Analysis of Amplifier Nonlinearities

" Focus on memoryless nonlinearity block

= The impact of filtering can be added later

Memoryless
Nonlinearity

X y
L
" Model nonlinearity as a Taylor series expansion up to
its third order term (assumes small signal variation)

y(t) = co+ c12(t) + cox(t)? + c3x(t)>

= For harmonic distortion, consider
x(t) = Acos(wt)
= For intermodulation, consider
x(t) = A(cos(wqt) + cos(wot))
M.H. Perrott MIT OCW



Harmonic Distortion

y(t) = co+ cr2(t) + com(t)® + caz(t)’
where z(t) = Acoswt

" Substitute x(t) into polynomial expression

y(t)—co = c1 A COSwt+co A2 OS2 witc3A> cos® wt

2 3

A A
“2 (1—|—<:052w£)—|—c34 (3 cos wt+cos 3wt)

= c1Acoswt+

2 3

A2 A
— &2 COS 2wt 3

3
S (clA 4 3c34

CQA

COS 3wt

COS wt
> ) wi

Fundamental Harmonics

" Notice that each harmonic term, cos(nwt), has an
amplitude that grows in proportion to A"

= Very small for small A, very large for large A
M.H. Perrott MIT OCW



Frequency Domain View of Harmonic Distortion

3c3A3

Afund = CiA +
Memoryless

A“ Nonlinearity “ “ “
0 w X y w 2w :;IJV
L

" Harmonics cause “noise”
= Their impact depends highly on application
= LNA — typically not of consequence
= Power amp — can degrade spectral mask
= Audio amp — depends on your listening preference!

" Gain for fundamental component depends on input
amplitude!
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1 dB Compression Point

3c3A3

Afund = CiA +
Memoryless

A“ Nonlinearity “ “ “
0 w X y w 2w JJV
—|/L

2Olog(Afund) R
" Definition: input signal level ,4--*
such that the small-signal &
gain drops by 1 dB

= Input signal level is high!

20log(A)
A48

" Typically calculated from simulation or measurement
rather than analytically

= Analytical model must include many more terms in Taylor

series to be accurate in this context
M.H. Perrott MIT OCW



Harmonic Products with An Input of Two Sine Waves

y(t) = co+ c12(t) + cpa(t)® + can(t)’
where z(t) = A(coswit + coswot)

" DC and fundamental components
2 9 .3
(co + oA )—I— ((clA + ZC3A )(coswit + CcOS wzt))

® Second and third harmonic terms

A2 A3
(622 (cos2wit 4 cos szt)) + <C34 (cos3w;t + cos 3’“’275))

= Similar result as having an input with one sine wave
= But, we haven’t yet considered cross terms!

M.H. Perrott MIT OCW



Intermodulation Products

y(t) = co+ c12(t) + cpa(t)® + can(t)’
where z(t) = A(coswit + coswot)

" Second-order intermodulation (IM2) products

coAZ(cos(wy + wa)t + cos(wy — wi)t)

" Third-order intermodulation (IM3) products

3
ZC3A3 ( cos(2wy + wo)t + cos(2wq — wo)t

+ cos(2wp + wi) + COS(2wo — wy )t )

= These are the troublesome ones for narrowband
systems

M.H. Perrott MIT OCW



Corruption of Narrowband Signals by Interferers

Memoryless
Nonlinearity
Interferers Desired
X(w) Narrowband X Yy
Signal —> /
W
0 W1 Wy
Corruption of desired signal
Y(W) “ / P g
1 “‘ [
OW2-W1 W4 Wy 2W1 2W2 3W1 3W2

2W1 -W2 2W2-W1 W1 +W2 2W1 +W2 2W2+W1

" Wireless receivers must select a desired signal that is
accompanied by interferers that are often much larger

= LNA nonlinearity causes the creation of harmonic and
intermodulation products

= Must remove interference and its products to retrieve
desired signal
M.H. Perrott MIT OCW



Use Filtering to Remove Undesired Interference

Memoryless
Nonlinearity
Interferers Desired
X(w) ~n Narrowband X Y |Band Z
Signal — an_ pass —p
Filter
W
0 W4 Wy
Corruption of desired signal
Y(w) / )
Il TTH “‘ [
0W2-W1 W4 Wy 2W1 2W2 3W1 3W2

2W4-Wy  2Wo-Wq W +Wy  2W +Wo 2WotwW,

Z(w) Corruption of desired signal

/
y -\ w

0 Wo-Wj W4 Wy 2W4 2W5 3wy 3w,
2W1 'W2 2W2'W1 W1 +W2 2W1 +W2 2W2+W1

" |neffective for IM3 term that falls in the desired signal

frequency band
M.H. Perrott MIT OCW



Characterization of Intermodulation

" Magnitude of third order products is set by c; and

input signal amplitude (for small A)
%C3A3(COS(2U}1 + wo)t + cos(2wq — wo)t

+ cos(2wo + wy ) + COS(2wo — wy )t )

" Magnitude of first order term is set by ¢, and A (for
small A)

9
(61A+ZC3A3) (coswit+Coswot) ~ c1 A(COS wit~+COS wot)

" Relative impact of intermodulation products can be
calculated once we know A and the ratio of c; to c,

= Problem: it’s often hard to extract the polynomial
coefficients through direct DC measurements

= Need an indirect way to measure the ratio of c; to c,
M.H. Perrott MIT OCW



Two Tone Test

" Input the sum of two equal amplitude sine waves into
the amplifier (assume Z,, of amplifier = R, of source)

Amplifier

/

Vout

2 3
Vout=Co*C1Vx+CoVy+c3Vy

Equal Amplitude Note: Vir (W)
Vin(W) Sine Waves Vy(W) = —5— v
2A----- R, y
I i
0 W1 W2 W Vin |—>
first-order output
/ ; g Vbias Zin=Rs
Vout(w) "“ / third-order IM term
it olle Dol geen
0 WorWs W1Wa 2w 2w, 3w, 3w,
2W1 'W2 2W2-W1 W1 +W2 2W1 +W2 2W2+W1

" On a spectrum analyzer, measure first order and third
order terms as A is varied (A must remain small)

= First order term will increase linearly
= Third order IM term will increase as the cube of A

M.H. Perrott

MIT OCW



Input-Referred Third Order Intercept Point (IIP3)

" Plot the results of the two-tone test over a range of A
(where A remains small) on a log scale (i.e., dB)

= Extrapolate the results to find the intersection of the
first and third order terms
20log(Asyng)

-------

First-order _
output —

. Thir.d—order_ 3 3
:/ IM term _ZC3A

20log(A)

Aras  Aips
= 1IP3 defined as the input power at which the
extrapolated lines intersect (higher value is better)

= Note that IIP3 is a small signal parameter based on
extrapolation, in contrast to the 1-dB compression point
M.H. Perrott MIT OCW



Relationship between IIP3, c, and c,

" Intersection point 2010g(Aryng)
3 K
|ClA| = ‘—63143‘ o0
4 ’,' .t
do
" Solve for A (gives A;;3) 1 dB. §135
First-order_C A E .Th':d . ;
4 ¢ output ~ ™1 . ird-order _ 3 ., A3
— A2 = — “1 (sz) : II\/;Iterm 4 3
3|c3 20l0g(A)

Arae  Aiips

" Note that A corresponds to the peak value of the two
cosine waves coming into the amplifier input node (V,)

= Would like to instead like to express IIP3 in terms of power

M.H. Perrott MIT OCW



IIP3 Expressed in Terms of Power at Source

= |IP3 referenced to Equal Amplitude _ NOI&" . (1)
V, (peak voltage) Vin(W) ZAE'??-WaVV W) =72 Amplifier
4 C1 YH.[ Rs Vx Vout
A2 — g T (sz) 0 W1 Wy W AAAA /
C3 v
" lIP3 referenced to V, Vi, —
(rms voltage) -
2 Vout=Co+C1Vx+C2V)%+CSV)?
A 2lc
2 1 2
Arms — (\/5) — g g (V:rms)
" Power across Z,, =R, " Note: Power fromyv,,
AZ 2 1 AZ 4 1
GulpS E R s (Watts) pfrms — TIC1) ~ (Watts)
R 3 |e3| Rs \ Rs 3 |c3| Rs
3 2 C1 1
= JIP3(dBm) = 10log | (10°)=|=| =] (dBm)
3 C3 RS
MIT OCW
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IIP3 as a Benchmark Specification

" Since lIP3 is a convenient parameter to describe the level
of third order nonlinearity in an amplifier, it is often
quoted as a benchmark spec

" Measurement of lIP3 on a discrete amplifier would be
done using the two-tone method described earlier

= This is rarely done on integrated amplifiers due to poor
access to the key nodes

= Instead, for a radio receiver for instance, one would simply
put in interferers and see how the receiver does

* Note: performance in the presence of interferers is not just a
function of the amplifier nonlinearity

® Calculation of IIP3 is most easily done using a simulator
such as Hspice or Spectre

= Two-tone method is not necessary — simply curve fit to a
third order polynomial

w.H. perrott. Note: two-tone can be done in CppSim MIT OCW



Impact of Differential Amplifiers on Nonlinearity

I I Memoryless
Jl 1 ? l\_ ) Nonlinearity
M, M, >

2|bias

" Assumeyv, is approximately incremental ground

g = () ()

s ()4 o (3)°)

C3 3
= Iclz'ﬁ = Cc1V;q T Zvid

— (co—l—cl_

® Second order term removed and lIP3 increased!
M.H. Perrott MIT OCW
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