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Resistor Loaded Amplifier (Unsilicided Poly)

We decided this was the fastest non-enhanced amplifier
- Can we go faster?  (i.e., can we enhance its bandwidth?)

We will look at the following
- Reduction of Miller effect on Cgd- Shunt, series, and zero peaking
- Distributed amplification
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Cgd is quite significant compared to Cgs- In 0.18µ CMOS, Cgd is about 45% the value of Cgs

Input capacitance calculation

- For 0.18µ CMOS, gain of 3, input cap is almost tripled 
over Cgs!
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Reduction of Cgd Impact Using a Cascode Device

The cascode device lowers the gain seen by Cgd of M1

- For 0.18m CMOS and gain of 3, impact of Cgd is reduced 
by 30%:

Issue:  cascoding lowers achievable voltage swing
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Source-Coupled Amplifier

Remove impact of Miller effect by sending signal 
through source node rather than drain node
- Cgd not Miller multiplied AND impact of Cgs cut in half!

The bad news
- Signal has to go through source node (Csb significant)
- Power consumption doubled
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Neutralization

Consider canceling the effect of Cgd- Choose CN = Cgd- Charging of Cgd now provided by CN

Benefit: Impact of Cgd removed
Issues:
- How do we create the inverting amplifier?
- What happens if CN is not precisely matched to Cgd?
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Practical Implementation of Neutralization

Leverage differential signaling to create an inverted signal
Only issue left is matching CN to Cgd- Often use lateral metal caps for CN (or CMOS transistor)
- If CN too low, residual influence of Cgd- If CN too high, input impedance has inductive component

Causes peaking in frequency response
Often evaluate acceptable level of peaking using eye diagrams
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Shunt-peaked Amplifier

Use inductor in load to extend bandwidth- Often implemented as a spiral inductor
We can view impact of inductor in both time and 
frequency- In frequency:  peaking of frequency response- In time:  delay of changing current in RL

Issue – can we extend bandwidth without significant 
peaking?
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Shunt-peaked Amplifier - Analysis

Expression for gain

Parameterize with

- Corresponds to ratio of RC to LR time constants
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The Impact of Choosing Different Values of m – Part 1

Parameterized gain expression

Comparison of new and old       
3 dB frequencies

Want to solve for w2/w1
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The Impact of Choosing Different Values of m – Part 2

From previous slide, we have

After much algebra

We see that m directly sets the amount of bandwidth 
extension!
- Once m is chosen, inductor value is



M.H. Perrott MIT OCW

Plot of Bandwidth Extension Versus m
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Highest extension:  w2/w1 = 1.85 at m ≈ 1.41
- However, peaking occurs!
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Plot of Transfer Function Versus m

Maximum 
bandwidth:            
m = 1.41   
(extension = 1.85)
Maximally flat 
response:              
m = 2.41   
(extension = 1.72)
Best phase 
response:              
m = 3.1      
(extension = 1.6)
No peaking:          
m = infinity
Eye diagrams often 
used to evaluate 
best m
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To Do

Add eye diagrams
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Zero-peaked Common Source Amplifier

Inductors are expensive with respect to die area
We can instead achieve bandwidth extension with 
capacitor- Idea:  degenerate gain at low frequencies, remove 

degeneration at higher frequencies (i.e., create a zero)
Issues:- Must increase RL to keep same gain (lowers pole)- Lowers achievable gate voltage bias (lowers device ft)
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Back to Inductors – Shunt and Series Peaking

Combine shunt peaking with a series inductor
- Bandwidth extension by converting to a second order 

filter response
Can be designed for proper peaking

Increases delay of amplifier
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T-Coil Bandwidth Enhancement

Uses coupled inductors to realize T inductor network
- Works best if capacitance at drain of M1 is much less than 

the capacitance being driven at the output load
See Chap. 8 of Tom Lee’s book (pp 187-191) for analysis
See S. Galal, B. Ravazi, “10 Gb/s Limiting Amplifier and 
Laser/Modulator Driver in 0.18u CMOS”, ISSCC 2003, pp 
188-189 and “Broadband ESD Protection …”, pp. 182-183
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Bandwidth Enhancement With ft Doublers

A MOS transistor has ft calculated as

ft doubler amplifiers attempt to 
increase the ratio of 
transconductance to capacitance
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- Capacitance seen by Vin for single-ended input:
- Difference in current: 

Transconductance to Cap ratio is doubled:
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Creating a Single-Ended Output

Input voltage is again dropped across two transistors
- Ratio given by voltage divider in capacitance

Ideally is ½ of input voltage on Cgs of each device
Input voltage source sees the series combination of 
the capacitances of each device
- Ideally sees ½ of the Cgs of M1

Currents of each device add to ideally yield ratio:
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Creating the Bias for M2

Use current mirror for bias
- Inspired by bipolar circuits (see Tom Lee’s book, page 198)

Need to set Vbias such that current through M1 has the 
desired current of Ibias- The current through M2 will ideally match that of M1

Problem:  achievable bias voltage across M1 (and M2) is 
severely reduced (thereby reducing effective ft of device)
- Do ft doublers have an advantage in CMOS?
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Increasing Gain-Bandwidth Product Through Cascading

We can significantly increase the gain of an amplifier 
by cascading n stages

- Issue – bandwidth degrades, but by how much?
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Analytical Derivation of Overall Bandwidth

The overall 3-db bandwidth of the amplifier is where

- w1 is the overall bandwidth
- A and wo are the gain and bandwidth of each section

- Bandwidth decreases much slower than gain increases!
Overall gain bandwidth product of amp can be increased!
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Transfer Function for Cascaded Sections

1/100 1/10 1 10 100
-80

-70

-60

-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 G
ai

n 
(d

B)

Normalized Frequency (Hz)

Normalized Transfer Function for Cascaded Sections

n=1

n=2

n=3

n=4

-3



M.H. Perrott MIT OCW

Choosing the Optimal Number of Stages

To first order, there is a constant gain-bandwidth 
product for each stage

- Increasing the bandwidth of each stage requires that we 
lower its gain

- Can make up for lost gain by cascading more stages
We found that the overall bandwidth is calculated as

Assume that we want to achieve gain G with n stages

From this, Tom Lee finds optimum gain ≈ 1.65
- See Tom Lee’s book, pp 207-211
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Achievable Bandwidth Versus G and n
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Motivation for Distributed Amplifiers

We achieve higher gain for a given load resistance by 
increasing the device size (i.e., increase gm)
- Increased capacitance lowers bandwidth

We therefore get a relatively constant gain-bandwidth product
We know that transmission lines have (ideally) infinite 
bandwidth, but can be modeled as LC networks
- Can we lump device capacitances into transmission line?
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Distributing the Input Capacitance

Lump input capacitance into LC network corresponding 
to a transmission line
- Signal ideally sees a real impedance rather than an RC 

lowpass
- Often implemented as lumped networks such as T-coils
- We can now trade delay (rather than bandwidth) for gain

Issue:  outputs are delayed from each other
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Distributing the Output Capacitance

Delay the outputs same amount as the inputs
- Now the signals match up
- We have also distributed the output capacitance!

Benefit – high bandwidth
Negatives – high power, poorer noise performance, 
expensive in terms of chip area
- Each transistor gain is adding rather than multiplying!
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Narrowband Amplifiers

For wireless systems, we are interested in 
conditioning and amplifying the signal over a narrow 
frequency range centered at a high frequency
- Allows us to apply narrowband transformers to create 

matching networks
Can we take advantage of this fact when designing 
the amplifier?
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Tuned Amplifiers

Put inductor in parallel across RL to create bandpass
filter
- It will turn out that the gain-bandwidth product is 

roughly conserved regardless of the center frequency!
Assumes that center frequency (in Hz) << ft

To see this and other design issues, we must look 
closer at the parallel resonant circuit
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Tuned Amp Transfer Function About Resonance

Evaluate at s = jw

Look at frequencies about resonance:
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Tuned Amp Transfer Function About Resonance (Cont.)

From previous slide

Simplifies to RC circuit for bandwidth calculation!
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Gain-Bandwidth Product for Tuned Amplifiers

The gain-bandwidth product:

The above expression is independent of center 
frequency!- In practice, we need to operate at a frequency less than 

the ft of the device
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By definition

For parallel tank (see Tom Lee’s book, pp 88-89)

Comparing to above:

The Issue of Q
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Three key parameters- Gain = gmRp- Center frequency = wo- Q = wo/BW
Impact of high Q - Benefit: allows achievement of high gain with low power- Problem:  makes circuit sensitive to process/temp 

variations

Design of Tuned Amplifiers
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Issue:  Cgd Can Cause Undesired Oscillation

At frequencies below resonance, tank looks inductive
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Use Cascode Device to Remove Impact of Cgd

At frequencies above and below resonance
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Active Real Impedance Generator

Input impedance:
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This Principle Can Be Applied To Impedance Matching

We will see that it’s advantageous to make Zin real 
without using resistors
- For the above circuit (ignoring Cgd)
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Use A Series Inductor to Tune Resonant Frequency

Calculate input impedance with added inductor

Often want purely resistive component at frequency wo- Choose Lg such that resonant frequency = wo
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