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Broadband Communication System

" Example: high speed data link on a PC board

package

Connector Adjoining pins die

Controlled Impedance

PCB trace
Driving ' .
Source . On-Chip
Z ' Ly

Delay = x ' -
Characteristic Impedance = Z : CLLLA + >
Vin Transmission Line E jf C1 C2 jf R. vV,

= We’ve now studied how to analyze the transmission line
effects and package parasitics

= What’s next?
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High Speed, Broadband Amplifiers

" The first thing that you typically do to the input signal
is amplify it

package

Connector Adjoining pins die

Controlled Impedance
PCB trace

Driving ' .
Source ; On-Chip
Z, ' L4 \Y
Delay = x : - out
Characteristic Impedance = Z ! m + W—’
Vi, Transmission Line E jf C, C, jf RL%VL
" Function

= Boosts signal levels to acceptable values
= Provides reverse isolation

" Key performance parameters
= Gain, bandwidth, noise, linearity
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Basics of MOS Large Signal Behavior (Qualitative)

Triode

Pinch-off

Saturation
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Overall I-V Characteristic
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Basics of MOS Large Signal Behavior (Quantitative)

Triode

Pinch-off

Saturation

M.H. Perrott

ID
<+—

—— Vps=0
D
)

T Cchannel = Cox(VGS'VT

I

4—
VANY;
D

Ip
—

Vp>AV

Ip = UnCoxﬂL (Ves - V1- Vbs/2)Vps

for Vpg << Vgs- V1

Ip = HnCoxﬂL (Ves- V1)Vbs

AV = VG S_VT

av= [ 2ot
HnCoxW

1
o= - MnCoxtL (Vas-Vr)(14AVpg)
(where A corresponds to

channel length modulation)
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Analysis of Amplifier Behavior

" Typically focus on small signal behavior
= Work with a linearized model such as hybrid-m

= Thevenin modeling techniques allow fast and efficient
analysis

" To do small signal analysis:

Small Signal Analysis Steps

1) Solve for bias current |4

Rs : 2) Calculate small signal
y AL parameters (such as g, o)
" 9 + 3) Solve for small signal response :
Vpias 9 using transistor hybrid-m small 5

signal model

M.H. Perrott MIT OCW



MOS DC Small Signal Model

B Assume transistor in saturation:

o lgRD o

Vgs ImVgs “OmbVs fo g X

\7- RS Im = unCox(W/L)(VGs - VT)(1 + )\VDS)
S
- =y 2u,Co(W/L)I5 (assuming AVpg << 1)
Y9m vV 20N,

b = where Y =
2\/2|®,| + Vgp

In practice: g,,,= 9,/5 to g,,/3

C

OX

et
° g
" Thevenin modeling based on the above
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Capacitors For MOS Device In Saturation

Top View Side View

junction bottom wall junction sidewall
cap (per area) / cap (per length)
Ci(0 Cisu(0
source to bulk cap: Cjg, = 9 WE + j2u(0) (W + 2E)
\/1 +Vsg /| Pg| \/1 +Vsg/|Pgl W (make 2W for "4 sided”
C-(O) C. (0) )/ perimeterin some cases)
drain to bulk cap: Cieq = ‘ WE + = (W + 2E)
V1 +Vog/|®g] V1 + Vo /| g

overlap cap: C,, = WLpCoy + WCiinge gate to channel cap: Cy; = % CoxW(L-2Lp)

channel to bulk cap: C, - ignore in this class
M.H. Perrott MIT OCW



MOS AC Small Signal Model (Device in Saturation)

---------------------------------------------------------

--------------------------------------------

2
Cgs = Cgc + Coy = ?COXW(L-zLD) + Coy

ng = Cov
Csp=Cjsp  (area + perimeter junction capacitance)

Cap = Cjgp  (area + perimeter junction capacitance)

M.H. Perrott MIT OCW



Wiring Parasitics

" Capacitance
= Gate: cap from poly to substrate and metal layers

= Drain and source: cap from metal routing path to
substrate and other metal layers

B Resistance

= Gate: poly gate has resistance (reduced by silicide)

= Drain and source: some resistance in diffusion region,
and from routing long metal lines

" Inductance
= Gate: poly gate has negligible inductance
= Drain and source: becoming an issue for long wires

Extract these parasitics from circuit layout

M.H. Perrott MIT OCW



Frequency Performance of a CMOS Device

" Two figures of merit in common use
= f.: frequency for which current gain is unity
= f .. : frequency for which power gain is unity

" Common intuition about f,
= Gain, bandwidth product is conserved

= @Gain - Bandwidth = f;

= We will see that MOS devices have an f; that shifts with
bias
» This effect strongly impacts high speed amplifier
topology selection

" We will focus on f;

= Look at pages 70-72 of Tom Lee’s book for discussion
onf ..

M.H. Perrott MIT OCW



Derivation of f, for MOS Device in Saturation

RLARGE

Viias lin

" Assumption is that input is current, output of device
is short circuited to a supply voltage

= Note that voltage bias is required at gate
= The calculated value of f, is a function of this bias voltage

M.H. Perrott MIT OCW



Derivation of f, for MOS Device in Saturation

--------------------------------------------------------

Ip+ig l _ E + Cgd
RiarcE in E Yo T Cos OnVes
- E .
Viias lin '
1 ' Csb

--------------------------------------------------------

1
P Vog =
d gm7Ugs gm (S(Cgs+cgd)> m
Ld gm
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Derivation of f, for MOS Device in Saturation

Ig
in
gm
= =
slope = -20 dB/dec I 2m(Cgs + Cyq)
1 f
ft\
5 1 Y
7 = vV = (2
d gm7Ugs gm S(Cgs T ng) m
1 dm

= T =
lin g2 f(Cgs + ng)
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Why is f, a Function of Voltage Bias?

dm

" f.is aratio of g, to gate capacitance

= g,, Is a function of gate bias, while gate cap is not (so long
as device remains biased)

" First order relationship between g, and gate bias:

%4
gm R pnCoz— (Vgs Vi)

Jr =

= The larger the gate bias, the higher the value for f,
" Alternately, f; is a function of current density

gm \/QﬂnCoaj(W/L)Id ﬂ
Cys + Cyq  (2/3)WLCop + W(Con/W) - | W

= So f, maximized at max current density (and minimum L)
M.H. Perrott MIT OCW



Speed of NMOS Versus PMOS Devices

dm

= S (Coe £ Cla)

" NMOS devices have much higher mobility than PMOS
devices (in current, non-strained, bulk CMOS processes)

tn ~ 2.5up fOr many processes
= fr of NMOS =~ 2.5 x f; of PMOS

= Intuition: NMOS devices provide approximately 2.5 x g,,
for a given amount of capacitance and gate bias voltage

= Also: NMOS devices provide approximately 2.5 x |, for a
given amount of capacitance and gate bias voltage

M.H. Perrott MIT OCW



Assumptions for High Speed Amplifier Analysis

" Assume that amplifier is loaded by an identical
amplifier and by fixed wiring capacitance

Ctot = Cout+Cin+Cfixed

Cin Cout Cin
|—> <J v |—>
Amp . Amp
—_1 Cfixed

" Intrinsic performance

= Defined as the bandwidth achieved for a given gain
when Cg, ., is negligible

= Amplifier approaches intrinsic performance as its device
sizes (and current) are increased

" |n practice, optimal sizing (and power) of amplifier is
roughly where C, +C_ . = Cs, 4

M.H. Perrott MIT OCW



The Miller Effect

" Concerns impedances that connect from input to
output of an amplifier

Zs
Zin Zout
Vin 4J Vout
A, o
Amp z,
" Input impedance:
Vi Zy

7 = —
. (Vm — Vout)/Zf 1-— Av

" Qutput impedance:

Vout — Zf
(Vout — Vm)/Zf 1 - 1/AU

M.H. Perrott MIT OCW

Loyt = ~ Zf for |A«U| > 1



Example: The Impact of Capacitance in Feedback

" Consider C, in the MOS device as C;

= Assume gain is negative c
f

va Il ya

in out

Vin 4J Vout
L

Ay

Amp Z,

" Impact on input capacitance: —
o 1/(sCy) 1
14 Ay sCp(1 H+ |Ag])
" Qutput impedance:
_1/(sCp) 1
T4 1/1Au] T sCp(1 4 1/]A4))
M.H. Perrott MIT OCW

= |looks like larger cap!

= only slightly larger!




Amplifier Example — CMOS Inverter

" Assume that we set V, ... such that the amplifier
nominal output is such that NMOS and PMOS
transistors are all in saturation

= Note: this topology VERY sensitive to bias errors

Vin 9 = Cixed
Vbias 9 -

Ciot = Cap1+Cqp2 + Cygs3tCygsa + K(Coy3+Coya) * Crixed

(+Cov1tCov2)  Miller multiplication factor

M.H. Perrott MIT OCW




Transfer Function of CMOS Inverter

(gm1 +gm2)(ro1 ||r02)

B Low Bandwidth!

slope = -20 dB/dec

M.H. Perrott

2nCtot(ro1 | |I’02)

Im1t9Im2
2T[Ct0t

Vin 9 = Cixed
Vbias 9 e

Ciot = Cap1+Cqp2 + Cygs3tCygsa + K(Coy3+Coya) * Crixed

(+Cov1tCov2)  Miller multiplication factor

MIT OCW



Add Resistive Feedback

Vout

Vin

Bandwidth

(gm1+gm2)(ro1 ||r02) ‘ extended and
\;zQOdB’deC less sensitivity

X(Im1tIm2)R i
(9m1*gm2)Rs 5 to bias offset
1 : : f
1 Egm1+gm2

2T[Ctot(ro1 ||I'02) 1: 2T[Ct0t

x —o| M M
21C R 2 4
tot f Rf VOUt

Vin _| M, == Crixed M,
Vbias —

Ciot = Cap1+Cqp2 + Cgs3tCgsa + K(Coy3+Coys) + Cri/2 + Ciixeqg

(+Cov1tCov2)  Miller multiplication factor

M.H. Perrott MIT OCW




We Can Still Do Better

" We are fundamentally looking for high g, to
capacitance ratio to get the highest bandwidth

= PMOS degrades this ratio
= Gate bias voltage is constrained

Vin _| M, == Ciixed M,
Vbias —_

Ciot = Cap1+Cap2 + Cys3+Cysa + K(Coy3+Coya) + Cre/2 + Crieq

(+Cov1tCoy2)  Miller multiplication factor

M.H. Perrott MIT OCW




Take PMOS Out of the Signal Path

" Advantages
= PMOS gate no longer loads the signal
= NMOS device can be biased at a higher voltage
" |ssue
= PMOS is not an efficient current provider (I /drain cap)
= Drain cap close in value to C

= Signal path is loaded by cap of R; and drain cap of
PMOS

M.H. Perrott MIT OCW



Shunt-Series Amplifier

" Use resistors to control the bias, gain, and
input/output impedances
= Improves accuracy over process and temp variations

" |ssues
= Degeneration of M, lowers slew rate for large signal
applications (such as limit amps)
= There are better high speed approaches — the advantage

of this one is simply accuracy

M.H. Perrott MIT OCW



Shunt-Series Amplifier — Analysis Snapshot

" From Chapter 8 of Tom Lee’s
book (see pp 191-197):

= Gain
A — Vout _ Rp, (Rf — RE) v
v = N n
Vin RE Rf —|— RL
where: Rp = 1/gm + Ry
Rp
1
= Input resistance
n.o— Rf _ RE(RJ‘" + Rp) - Rf for Rf > Ry,
1 - A, Rp + R; 1+ Ry /Ry Ry > 1/gm

= Output resistance

_ RE(Rf + Rs) - Rf

out — RE‘|‘R5 ~ 1—|—R5/R1 for Rf > Rs,Rl > 1/Qm
M.H. Perrott MIT OCW

’ ‘ Same for R = R,_!‘




NMOS Load Amplifier

. gjnz Ve vou =
wd o Tl

Ciot = Cap1+CspotCyso + Cye3tKCoy3 + Cixeq

(+Cov1) Miller multiplication factor

Vin
Om1 slope =
Im2 \_-20 dB/dec
1 f
. Om1
E 2T[Ctot
Im2
2T[Ct0t

" Gain set by the relative sizing of M, and M,

Myt I = (1/2)punCos(W1/L1)(Vin — V)?

‘ Ign = 1o

Mo Ijp = (1/2)unCor(Wo/L2)(Vig—Veur—Vi)?

= Vour = —AViN + Vg + (A-1)Vp

V = V. V..
M.H. Perrott ‘( IN in bmS)

where A = \l

Wi/Ly
Wo /Lo

MTT

ocw



Design of NMOS Load Amplifier

V
dd Ctot = C#1+Csb2+C932 + Cgs3+K§ov3 + Cfixed
Ir_ﬂ M,
(+Cov1) Miller multiplication factor

9 ;Ej.lld .Vout
Vbia: M, T Cticed M, _ Wy /Ly
AII;L 1 L{i A_JWQ/LQ

" Size transistors for gain and speed
= Choose minimum L for maximum speed
= Choose ratio of W, to W, to achieve appropriate gain
" Problem: V; of M, lowers the bias voltage of the next
stage (thus lowering its achievable f,)
= Severely hampers performance when amplifier is cascaded

= One person solved this issue by increasing V 4, of NMOS
load (see Sackinger et. al., “A 3-GHz 32-dB CMOS Limiting
Amplifier for SONET OC-48 receivers”, JSSC, Dec 2000)

M.H. Perrott MIT OCW



Resistor Loaded Amplifier (Unsilicided Poly)

Vin 9
Vbias 9

(+Cov1)

Vo Yout
R, Vin
l Id Vout :
1 ' ‘ slope =
[, L e L{Eiiﬂz Im1RL ™\_-20 dB/dec
1 1 f
. Im1
Ciot = Cap1tCr1/2 + CgotKCoyp + Cixed ! DNMCyy
Miller multiplication factor !
2T[RLCtot

" This is the fastest non-enhanced amplifier I’ve found
= Unsilicided poly is a pretty efficient current provider

(i..e, has a good current to capacitance ratio)
= Output swing can go all the way up to V
= Allows following stage to achieve high f,

= Linear settling behavior (in contrast to NMOS load)

M.H. Perrott
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Implementation of Resistor Loaded Amplifier

" Typically implement using differential pairs

Vdd
R1 R2
Vos
V = =

o E E
llbias/2
in+ Vin- Cfixed Cfixed
Alyias M, M, I— M; M, |—

J l Ibias
M, | ™ wm,

I W, |
" Benefits
= Self-biased
= Common-mode rejection
" Negative

= More power than single-ended version

M.H. Perrott MIT OCW



The Issue of Velocity Saturation

" We classically assume that MOS current is calculated as

MnCO:UW 2
Ip = Vgs — V.
D > L( gs — V1)
" Which is really
unCor W
Ip= n2 - T (Vgs - VT)Vdsat,l

= Vgsat) COrresponds to the saturation voltage at a given
length, which we often refer to as AV

" It may be shown that

(VQS _ VT)(LEsat)
(VQS o VT) + (LEsat)

= If V.-V, approaches LE__ in value, then the top equation is
no fonger valid

= We say that the device is in velocity saturation

Vdsat,l ~ — (VgS_VT)H(LEsat)

M.H. Perrott MIT OCW



Analytical Device Modeling in Velocity Saturation

" |f L small (as in modern devices), than velocity
saturation will impact us for even moderate values
of V-V

. tnC oy
2

Iy Vs = VD) (Vs — VD) | (L Bsa)]

/UJnCOQ:

= Ip~ W (Vys — V) Esqt

= Current increases linearly with V .-V,!
" Transconductance in velocity saturation:

dl d ,Uncoaj
= = =
gm Vs dgm

WEsat

= No longer a function of V!

M.H. Perrott MIT OCW



M.H.

Example: Current Versus Voltage for 0.18u Device

= —_— |, versus V
d gs

1.4

1.2

Id (milliAmps)
o
(o]

o
o)

0.4

0.2f

| | | | |
0.4 0.6 0.8 1 1.2 1.4 1.6
Vgs (Volts)

Perroftt

|
1.8 2
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Example: G,, Versus Voltage for 0.18u Device

=
|

RN

oo

—

g versusV
m gs

o

RN

(0]
—

[EEN

o o o
~ [00] ©
T

o
o)

g, (milliAmps/Volts)
o o
I 13

o
()
T

o
(V)

0.1F

| | | | | | |
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
VgS (Volts)
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Example: G,, Versus Current Density for 0.18u Device

I 1
Note: I;, = -2 =_"2
%4 1.8u
= % Transconductance versus Current Density

(=Y
T

o
o
T

Transconductance (milliAmps/Volts)
o o
IS (o))
T T

o
[N

| | |
0 100 200 300 400 500 600 700
Current Density (microAmps/micron)
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How Do We Design the Amplifier?

" Highly inaccurate to assume square law behavior

" We will now introduce a numerical procedure based
on the simulated g, curve of a transistor

= Alook at g,, assuming square law device:

%% W /1

L \W

= Observe that if we keep the current density (I /W)
constant, then g, scales directly with W

= This turns out to be true outside the square-law regime
as well

= We can therefore relate g of devices with different
widths given that have the same current density

%%
gm(W, Iden) — ng(woa Iden)
O

M.H. Perrott MIT OCW




A Numerical Design Procedure for Resistor Amp — Step 1

= Set gain and swing (single-
A ended)

Vg % " Two key equations
R
VO

Y, = !:l V. (1) gm(W, I};0s/W)R= A
" I_ (2) Vsw = QIbiasR

albias

§ 21 " Equate (1) and (2) through R
T Ms A Vsw

gm(W, Ibz'as/W) - 21505

A iy
= (W, Do/ W) = 25 W (52)

Can we relate this formula to a g,,, curve taken
from a device of width W ?
M.H. Perrott MIT OCW




A Numerical Design Procedure for Resistor Amp — Step 2

® We now know:

A (I,
(1) gm(W, I, JW) = zvsww( W)
W

(2) gm(W7 Iden) — ng(W07 Iden)
" Substitute (2) into (1)

% A /T,
T (Wo, Liyqs /W) = 20— W (a2 )

A
j gm(Wo, Iden) — QWOV

SW

Iden

" The above expression allows us to design the resistor
loaded amp based on the g, curve of a representative
transistor of width W_!

M.H. Perrott MIT OCW



Example: Design for Swing of 1 V, Gain of 1 and 2

A
gm(W07 Iden) — QWOV

SW

Iden

" Assume L=0.18}, use previous g, plot (W_=1.8L)

Transconductance versus Current Density
T

" For gain of 1,
current density =
250 pA/pm

" For gain of 2,
current density =
115 pA/um

" Note that current
density reduced
as gain increases!

= f, effectively
decreased

(=Y
T

o
o

Transconductance (milliAmps/\Volts)
o o
N (e}
T

o
[N

0 L. ! . ! ! ! !
0 100 200 300 400 500 600 700
Current Density - lgen (MicroAmps/micron)
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Example (Continued)

" Knowledge of the current density allows us to design
the amplifier

= Recall Vg =2I;,,.R

= Free parameters are W, |,..., and R (L assumed to be fixed)
" Given |l ., = 115 pA/pm (Swing = 1V, Gain = 2)

= If we choose | .. =300 pA

I Thias .y 2399 _ 5 ¢
— = == . ™m
den W 115 H
1
Vew = 21y;, B = R = = 1.67kS<2

~ 2.300x 10-°

" Note that we could instead choose W or R, and then
calculate the other parameters

M.H. Perrott MIT OCW



How Do We Choose I,;, For High Bandwidth?

Ctot = Cout'|'Cin+(-\’fixed

L >ﬂ LIS

" As youincrease |, the size of transistors also
increases to keep a constant current density

= The size of C,, and C_ , increases relative to C;, .4

" To achieve high bandwidth, want to size the devices
(i.e., choose the value for . ), such that

= C,,+C_, roughly equal to C;,

M.H. Perrott MIT OCW
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