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High Speed Frequency Dividers in Wireless Systems

Design Issues:  high speed, low power
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Divide-by-2 Circuit (Johnson Counter)

Achieves frequency division by clocking two latches 
(i.e., a register) in negative feedback
Latches may be implemented in various ways 
according to speed/power requirements
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Divide-by-2 Using a TSPC register

Advantages
- Reasonably fast, compact size
- No static power dissipation, differential clock not required

Disadvantages
- Slowed down by stacked PMOS, signals goes through 

three gates per cycle
- Requires full swing input clock signal
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Divide-by-2 Using Razavi’s Topology

Faster topology than TSPC approach
See B. Rezavi et. al., “Design of High Speed, Low Power 
Frequency Dividers and Phase-Locked Loops in Deep 
Submicron CMOS”, JSSC, Feb 1995, pp 101-109
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Explanation of Razavi Divider Operation (Part 1)

Left latch:
- Clock drives current from PMOS devices of a given latch 

onto the NMOS cross-coupled pair
- Latch output voltage rises asymmetrically according to 

voltage setting on gates of outside NMOS devices
Right latch:
- Outside NMOS devices discharge the latch output 

voltage as the left latch output voltage rises
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Explanation of Razavi Divider Operation (Part 2)

Right latch:
- Clock drives current from PMOS devices of a given latch 

onto the NMOS cross-coupled pair
- Latch output voltage rises asymmetrically according to 

voltage setting on gates of outside NMOS devices
Left latch:
- Outside NMOS devices discharge the latch output 

voltage as the left latch output voltage rises
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Explanation of Razavi Divider Operation (Part 3)

Process starts over again with current being driven 
into left latch
- Voltage polarity at the output of the latch has now 

flipped
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Advantages and Disadvantages of Razavi Topology

Advantages- Fast – no stacked PMOS, signal goes through only two 
gates per cycle

Disadvantages- Static power- Full swing, differential input clock signal required
Note:  quarter period duty cycle can be turned into fifty 
percent duty cycle with OR gates after the divider- See my thesis at http://www-mtl.mit.edu/~perrott
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Divide-by-2 Using Wang Topology

Claims to be faster than Razavi topology
- Chief difference is addition of NMOS clock devices and 

different scaling of upper PMOS devices
See HongMo Wang, “A 1.8 V 3 mW 16.8 GHz Frequency 
Divider in 0.25µm CMOS”, ISSCC 2000, pp 196-197
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Explanation of Wang Topology Operation (Part 1)

Left latch
- Current driven into latch and output voltage responds 

similar to Razavi architecture
Right latch
- Different than Razavi architecture in that latch output 

voltage is not discharged due to presence of extra NMOS
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Same process repeats on the right side
- The left side maintains its voltages due to presence of 

NMOS device
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Advantages and Disadvantages of Wang Topology
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Advantages
- Fast – no stacked PMOS, signal goes through only two 

gates per cycle
Disadvantages
- Static power
- Full swing, differential input clock signal required
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Divide-by-2 Using SCL Latches

Fastest structure uses resistors for load
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Explanation of SCL Topology Operation (Part 1)

Left latch
- Current directed into differential amp portion of latch

Latch output follows input from right latch
Right latch
- Current directed into cross-coupled pair portion of latch

Latch output is held
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Left latch
- Current is directed into cross-coupled pair

Latch output voltage retained
Right latch
- Current is directed into differential amp

Latch output voltage follows input from left latch 
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Explanation of SCL Topology Operation (Part 2)
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Same process repeats on left side
- Voltage polarity is now flipped
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Explanation of SCL Topology Operation (Part 3)
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Advantages and Disadvantages of SCL Topology

Advantages
- Very fast – no PMOS at all, signal goes through only two 

gates per cycle
- Smaller input swing for input clock than previous 

approaches
Much easier to satisfy at high frequencies

Disadvantages
- Static power
- Differential signals required
- Large area compared to previous approaches
- Biasing sources required

Note:  additional speedup can be obtained by adding 
using inductor peaking as described for amplifiers in 
Lecture 6
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Creating Higher Divide Values (Synchronous Approach)

Cascades toggle registers and logic to perform division
- Advantage:  low jitter (explained shortly)
- Problems:  high power (all registers run at high frequency), 

high loading on clock (IN signal drives all registers)

T Q

Qclk

IN

OUT
T Q

Qclk

T Q

Qclk

1 A B

IN

OUT

A

B

Register Register Register

D Q

Qclk

Register

Toggle Register

T

clk

Q

Q



M.H. Perrott MIT OCW

Creating Higher Divide Values (Asynchronous Approach)

Higher division achieved by simply cascading          
divide-by-2 stages
Advantages over synchronous approach
- Lower power:  each stage runs at a lower frequency, 

allowing power to be correspondingly reduced
- Less loading of input:  IN signal only drives first stage

Disadvantage:  jitter is larger
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Jitter in Asynchronous Designs

Each logic stage adds jitter to its output
- Jitter accumulates as it passes through more and more 

gates
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Jitter in Synchronous Designs

Transition time of register output is set by the clock, 
not the incoming data input
- Synchronous circuits have jitter performance 

corresponding to their clock
- Jitter does not accumulate as signal travels through 

synchronous stages
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High Speed, Low Power Asynchronous Dividers

Highest speed achieved with differential SCL registers
- Static power consumption not an issue for high speed 

sections, but wasteful in low speed sections
Lower power achieved by using full swing logic for low 
speed sections
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Differential to Full Swing Converter

Use an opamp style circuit to translate differential 
input voltage to a single-ended output
Use an inverter to amplify the single-ended output to 
full swing level

Out

Vin Vin

Vdd

0

Inverter
Threshold
Voltage

Y



M.H. Perrott MIT OCW

Issue:  Architecture Very Sensitive to DC Offset

Opamp style circuit has very high DC gain from Vin to 
node Y
DC offset will cause signal to rise above or fall below 
inverter threshold
- Output signal rails rather than pulsing
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Use Resistor Feedback to Reduce DC Gain

Idea:  create transresistance amplifier rather than voltage 
amplifier out of inverter by using feedback resistor
- Presents a low impedance to node Y
- Current from opamp style circuit is shunted through resistor
- DC offset at input shifts output waveform slightly, but not 

node Y (to first order)
Circuit is robust against DC offset!
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Alternate Implementation of Inverter Feedback

Nonlinear feedback using MOS devices can be used 
in place of resistor
- Smaller area than resistor implementation

Analysis done by examining impact of feedback when 
output is high or low
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Impact of Nonlinear Feedback When Output is High

Corresponds to case where current flows into node Y
- NMOS device acts like source follower
- PMOS device is shut off

Output is approximately set to Vgs of NMOS feedback 
device away from inverter threshold voltage
- Inverter input is set to a value that yields that output voltage

High DC gain of inverter insures it is close to inverter threshold
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Impact of Nonlinear Feedback When Output is Low

Corresponds to case where current flows out of node Y
- NMOS device is shut off
- PMOS device acts like source follower

Output is approximately set to Vgs of PMOS feedback 
device away from inverter threshold voltage
- Inverter input is set to a value that yields that output voltage

High DC gain of inverter insures it is close to inverter threshold



M.H. Perrott MIT OCW

Variable Frequency Division

Classical design partitions variable divider into two sections
- Asynchronous section (called a prescaler) is fast

Often supports a limited range of divide values
- Synchronous section has no jitter accumulation and a wide 

range of divide values
- Control logic coordinates sections to produce a wide range of 

divide values
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Dual Modulus Prescalers

Dual modulus design supports two divide values
- In this case, divide-by-8 or 9 according to CON signal

One cycle resolution achieved with front-end “2/3” divider
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Divide-by-2/3 Design (Classical Approach)

Normal mode of operation:   CON* = 0 ⇒ Y = 0
- Register B acts as divide-by-2 circuit

Divide-by-3 operation:  CON* = 1 ⇒ Y = 1
- Reg B remains high for an extra cycle

Causes Y to be set back to 0 ⇒ Reg B toggles again
CON* must be set back to 0 before Reg B toggles to 
prevent extra pulses from being swallowed
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Control Qualifier Design (Classical Approach)

Must align CON signal to first “2/3” divider stage
- CON signal is based on logic clocked by divider output

There will be skew between “2/3” divider timing and CON
Classical approach cleverly utilizes outputs from each 
section to “gate” the CON signal to “2/3” divider
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Multi-Modulus Prescalers

Cascaded 2/3 sections achieves a range of 2n to 2n+1-1
- Above example is 8/ L /15 divider

Asynchronous design allows high speed and low 
power operation to be achieved
- Only negative is jitter accumulation
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A More Modular Design

Perform control qualification by synchronizing within 
each stage before passing to previous one
- Compare to previous slide in which all outputs required 

for qualification of first 2/3 stage
See Vaucher et. al., “A Family of Low-Power Truly 
Modular Programmable Dividers …”, JSSC, July 2000

IN OUT

modinmodout

2/3

CON

IN OUT

modinmodout

2/3

CON

IN OUT

modinmodout

2/3

CON Vdd

CON0 CON1 CON2

IN OUT

IN
A
B

OUT

8 + CON0*20 + CON1*21 + CON2*22

A B



M.H. Perrott MIT OCW

Implementation of 2/3 Sections in Modular Approach 

Approach has similar complexity to classical design
- Consists of two registers with accompanying logic gates

Cleverly utilizes “gating” register to pass synchronized 
control qualifying signal to the previous stage
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Implementation of Latch and And Gate in 2/3 Section

Combine AND gate and latch for faster speed and lower 
power dissipation
Note that all primitives in 2/3 Section on previous slide 
consist of this combination or just a straight latch
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Can We Go Even Faster?
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Speed Limitations of Divide-by-2 Circuit

Maximum speed limited only by propagation delay 
(delay1, delay2)  of latches and setup time of 
latches (Ts)
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Speed Limitations of Gated Divide-by-2/3 Circuit

Maximum speed limited by latch plus gating logic

Gated divide-by-2/3 fundamentally slower than divide-by-2
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Divide-by-2/3 Using Phase Shifting

Achieves speed of divide-by-2 circuits!
- MUX logic runs at half the input clock speed
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Implementation Challenges to Phase Shifting

Avoiding glitches
- By assumption of sine wave characteristics

Craninckx et. al., “A 1.75 GHz/3 V Dual-Modulus Divide-
by-128/129 Prescaler …”, JSSC, July 1996

- By make-before-break switching
My thesis:  http://www-mtl.mit.edu/~perrott/

- Through re-timed multiplexor
Krishnapura et. al, “A 5.3 GHz Programmable Divider for 
HiPerLan in 0.25µm CMOS”, JSSC, July 2000

Avoiding jitter due to mismatch in phases
- Through calibration

Park et. al., “A 1.8-GHz Self-Calibrated Phase-Locked 
Loop with Precise I/Q Matching”, JSSC, May 2001
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Further Reduction of MUX Operating Frequency

Leverage the fact that divide-by-2 circuit has 4 phases
- Create divide-by-4/5 by cascading two divide-by-2 circuits

Note that single cycle pulse swallowing still achieved
- Mux operates at one fourth the input frequency!
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Impact of Divide-by-4/5 in Multi-Modulus Prescaler

Issue – gaps are created in divide value range
- Divide-by-4/5 lowers swallowing resolution of following 

stage
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Method to “Fill In” Divide Value Range

Allow divide-by-4/5 to swallow more than one input 
cycle per OUT period
- Divide-by-4/5 changed to Divide-by-4/5/6/7

Note:  at least two divide-by-2/3 sections must follow
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Example Architecture for a Phase-Shifted Divider

Phase shifting in first divide-by-4/5/6/7 stage to 
achieve high speed
Remaining stages correspond to gated divide-by-2/3 
cells
For details, see my thesis - http://www-mtl.mit.edu/~perrott/
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