

# 6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators

Michael Perrott

Massachusetts Institute of Technology

Copyright © 2003 by Michael H. Perrott

## VCO Design for Wireless Systems



#### Design Issues

- Tuning Range need to cover all frequency channels
- Noise impacts receiver blocking and sensitivity performance
- Power want low power dissipation
- Isolation want to minimize noise pathways into VCO
- Sensitivity to process/temp variations need to make it manufacturable in high volume

### VCO Design For High Speed Data Links



- Design Issues
  - Same as wireless, but:
    - Required noise performance is often less stringent
    - Tuning range is often narrower

## Popular VCO Structures



- LC Oscillator: low phase noise, large area
- Ring Oscillator: easy to integrate, higher phase noise

#### Barkhausen's Criteria for Oscillation



Closed loop transfer function

$$G(jw) = \frac{Y(jw)}{X(jw)} = \frac{H(jw)}{1 - H(jw)}$$

 Self-sustaining oscillation at frequency w<sub>o</sub> if

$$H(jw_o) = 1$$



- Amounts to two conditions:
  - Gain = 1 at frequency w<sub>o</sub>
  - Phase = n360 degrees (n = 0,1,2,...) at frequency w<sub>o</sub>

## Example 1: Ring Oscillator



- Gain is set to 1 by saturating characteristic of inverters
- Phase equals 360 degrees at frequency of oscillation



**Assume N stages each with phase shift**  $\Delta\Phi$ 

$$2N\Delta\Phi = 360^o \Rightarrow \Delta\Phi = \frac{180^o}{N}$$

Alternately, N stages with delay ∆t

$$2N\Delta t = T \Rightarrow \Delta t = \frac{T/2}{N}$$

## Further Info on Ring Oscillators

- Due to their relatively poor phase noise performance, ring oscillators are rarely used in RF systems
  - They are used quite often in high speed data links, though
- We will focus on LC oscillators in this lecture
- Some useful info on CMOS ring oscillators
  - Maneatis et. al., "Precise Delay Generation Using Coupled Oscillators", JSSC, Dec 1993 (look at pp 127-128 for delay cell description)
  - Todd Weigandt's PhD thesis http://kabuki.eecs.berkeley.edu/~weigandt/

### Example 2: Resonator-Based Oscillator



Barkhausen Criteria for oscillation at frequency w<sub>o</sub>:

$$G_m Z(jw_o) = 1$$

Assuming G<sub>m</sub> is purely real, Z(jw<sub>o</sub>) must also be purely real

#### A Closer Look At Resonator-Based Oscillator



- For parallel resonator at resonance
  - Looks like resistor (i.e., purely real) at resonance
    - Phase condition is satisfied
    - Magnitude condition achieved by setting G<sub>m</sub>R<sub>p</sub> = 1

# Impact of Different G<sub>m</sub> Values



- Root locus plot allows us to view closed loop pole locations as a function of open loop poles/zero and open loop gain (G<sub>m</sub>R<sub>p</sub>)
  - As gain (G<sub>m</sub>R<sub>p</sub>) increases, closed loop poles move into right half S-plane

## Impact of Setting $G_m$ too low



- Closed loop poles end up in the left half S-plane
  - Underdamped response occurs
    - Oscillation dies out

## Impact of Setting G<sub>m</sub> too High



- Closed loop poles end up in the right half S-plane
  - Unstable response occurs
    - Waveform blows up!

# Setting G<sub>m</sub> To Just the Right Value



Closed Loop Step Response



- Closed loop poles end up on jw axis
  - Oscillation maintained
- Issue G<sub>m</sub>R<sub>p</sub> needs to exactly equal 1
  - How do we achieve this in practice?

### Amplitude Feedback Loop



- One thought is to detect oscillator amplitude, and then adjust G<sub>m</sub> so that it equals a desired value
  - By using feedback, we can precisely achieve  $G_mR_p = 1$
- Issues
  - Complex, requires power, and adds noise

## Leveraging Amplifier Nonlinearity as Feedback



- Practical transconductance amplifiers have saturating characteristics
  - Harmonics created, but filtered out by resonator
  - Our interest is in the relationship between the input and the fundamental of the output

## Leveraging Amplifier Nonlinearity as Feedback



- As input amplitude is increased
  - Effective gain from input to fundamental of output drops
  - Amplitude feedback occurs! (G<sub>m</sub>R<sub>p</sub> = 1 in steady-state)

#### One-Port View of Resonator-Based Oscillators



- Convenient for intuitive analysis
- Here we seek to cancel out loss in tank with a negative resistance element
  - To achieve sustained oscillation, we must have

$$\frac{1}{G_m} = R_p \quad \Rightarrow \quad G_m R_p = 1$$

### One-Port Modeling Requires Parallel RLC Network

 Since VCO operates over a very narrow band of frequencies, we can always do series to parallel transformations to achieve a parallel network for analysis



- Warning in practice, RLC networks can have secondary (or more) resonant frequencies, which cause undesirable behavior
  - Equivalent parallel network masks this problem in hand analysis

Simulation will reveal the problem

## Example - Negative Resistance Oscillator



- This type of oscillator structure is quite popular in current CMOS implementations
  - Advantages
    - Simple topology
    - Differential implementation (good for feeding differential circuits)

Good phase noise performance can be achieved

# Analysis of Negative Resistance Oscillator (Step 1)



- Derive a parallel RLC network that includes the loss of the tank inductor and capacitor
  - Typically, such loss is dominated by series resistance in the inductor

## Analysis of Negative Resistance Oscillator (Step 2)



- Split oscillator circuit into half circuits to simplify analysis
  - Leverages the fact that we can approximate V<sub>s</sub> as being incremental ground (this is not quite true, but close enough)
- Recognize that we have a diode connected device with a negative transconductance value
  - Replace with negative resistor
    - Note: G<sub>m</sub> is *large signal* transconductance value

## Design of Negative Resistance Oscillator



- Design tank components to achieve high Q
  - Resulting R<sub>p</sub> value is as large as possible
- Choose bias current (I<sub>bias</sub>) for large swing (without going far into saturation)
  - We'll estimate swing as a function of I<sub>bias</sub> shortly
- Choose transistor size to achieve adequately large g<sub>m1</sub>
  - Usually twice as large as 1/R<sub>p1</sub> to guarantee startup

## **Calculation of Oscillator Swing**



- Design tank components to achieve high Q
  - Resulting R<sub>p</sub> value is as large as possible
- Choose bias current (I<sub>bias</sub>) for large swing (without going far into saturation)
  - We'll estimate swing as a function of I<sub>bias</sub> in next slide
- Choose transistor size to achieve adequately large g<sub>m1</sub>
  - Usually twice as large as 1/R<sub>p1</sub> to guarantee startup

# Calculation of Oscillator Swing as a Function of Ibias

- By symmetry, assume I₁(t) is a square wave
  - We are interested in determining fundamental component
    - (DC and harmonics filtered by tank)



Fundamental component is

$$I_1(t) \Big|_{fundamental} = \frac{2}{\pi} I_{bias} \sin(w_o t), \text{ where } w_o = \frac{2\pi}{T}$$

Resulting oscillator amplitude

$$A = \frac{2}{\pi} I_{bias} R_p$$

#### Variations on a Theme



- Biasing can come from top or bottom
- Can use either NMOS, PMOS, or both for transconductor
  - Use of both NMOS and PMOS for coupled pair would appear to achieve better phase noise at a given power dissipation
    - See Hajimiri et. al, "Design Issues in CMOS Differential LC Oscillators", JSSC, May 1999 and Feb, 2000 (pp 286-287)

## **Colpitts Oscillator**



- Carryover from discrete designs in which single-ended approaches were preferred for simplicity
  - Achieves negative resistance with only one transistor
  - Differential structure can also be implemented
- Good phase noise can be achieved, but not apparent there is an advantage of this design over negative resistance design for CMOS applications

## Analysis of Cap Transformer used in Colpitts



- Voltage drop across R<sub>L</sub> is reduced by capacitive voltage divider
  - Assume that impedances of caps are less than R<sub>L</sub> at resonant frequency of tank (simplifies analysis)
    - Ratio of V<sub>1</sub> to V<sub>out</sub> set by caps and not R<sub>L</sub>
- Power conservation leads to transformer relationship shown

# Simplified Model of Colpitts



- Purpose of cap transformer
  - Reduces loading on tank
  - Reduces swing at source node (important for bipolar version)



Transformer ratio set to achieve best noise performance

## Design of Colpitts Oscillator



- Design tank for high Q
- Choose bias current (I<sub>bias</sub>) for large swing (without going far into saturation)
- Choose transformer ratio for best noise
  - Rule of thumb: choose N = 1/5 according to Tom Lee
- Choose transistor size to achieve adequately large g<sub>m1</sub>

# Calculation of Oscillator Swing as a Function of Ibias

- I<sub>1</sub>(t) consists of pulses whose shape and width are a function of the transistor behavior and transformer ratio
  - Approximate as narrow square wave pulses with width W



Fundamental component is

$$I_1(t) \Big|_{fundamental} pprox 2I_{bias} \sin(w_o t), \quad \text{where } w_o = rac{2\pi}{T}$$

Resulting oscillator amplitude

$$A \approx 2I_{bias}R_{eq}$$

## Clapp Oscillator



- Same as Colpitts except that inductor portion of tank is isolated from the drain of the device
  - Allows inductor voltage to achieve a larger amplitude without exceeded the max allowable voltage at the drain

Good for achieving lower phase noise

# Simplified Model of Clapp Oscillator



## Hartley Oscillator



- Same as Colpitts, but uses a tapped inductor rather than series capacitors to implement the transformer portion of the circuit
  - Not popular for IC implementations due to the fact that capacitors are easier to realize than inductors

## Simplified Model of Hartley Oscillator



### Integrated Resonator Structures

- Inductor and capacitor tank
  - Lateral caps have high Q (> 50)
  - $\blacksquare$  Spiral inductors have moderate Q (5 to 10), but completely integrated and have tight tolerance (<  $\pm$  10%)
  - Bondwire inductors have high Q (> 40), but not as "integrated" and have poor tolerance (>  $\pm$  20%)
  - Note: see Lecture 4 for more info on these



### Integrated Resonator Structures

- Integrated transformer
  - Leverages self and mutual inductance for resonance to achieve higher Q
  - See Straayer et. al., "A low-noise transformer-based 1.7 GHz CMOS VCO", ISSCC 2002, pp 286-287



#### **Quarter Wave Resonator**



Impedance calculation (from Lecture 4)

$$Z(\lambda_o/4) \approx -j\frac{2}{\pi}\sqrt{\frac{L}{C}\left(\frac{w_o}{\Delta w}\right)}$$

- Looks like parallel LC tank!
- Benefit very high Q can be achieved with fancy dielectric
- Negative relatively large area (external implementation in the past), but getting smaller with higher frequencies!

### Other Types of Resonators

- Quartz crystal
  - Very high Q, and very accurate and stable resonant frequency
    - Confined to low frequencies (< 200 MHz)</li>
    - Non-integrated
  - Used to create low noise, accurate, "reference" oscillators
- SAW devices
  - High frequency, but poor accuracy (for resonant frequency)
- MEMS devices
  - Cantilever beams promise high Q, but non-tunable and haven't made it to the GHz range, yet, for resonant frequency
  - FBAR Q > 1000, but non-tunable and poor accuracy
  - Other devices are on the way!

# Voltage Controlled Oscillators (VCO's)



- Include a tuning element to adjust oscillation frequency
  - Typically use a variable capacitor (varactor)
- Varactor incorporated by replacing fixed capacitance
  - Note that much fixed capacitance cannot be removed (transistor junctions, interconnect, etc.)

Fixed cap lowers frequency tuning range

# Model for Voltage to Frequency Mapping of VCO



- Model VCO in a small signal manner by looking at deviations in frequency about the bias point
  - Assume linear relationship between input voltage and output frequency  $F_{out}(t) = K_v v_{in}(t)$

# Model for Voltage to Phase Mapping of VCO

$$F_{out}(t) = K_v v_{in}(t)$$

- Phase is more convenient than frequency for analysis
  - The two are related through an integral relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi F_{out}(\tau) d\tau = \int_{-\infty}^{t} 2\pi K_v v_{in}(\tau) d\tau$$

Intuition of integral relationship between frequency and phase



### Frequency Domain Model of VCO

Take Laplace Transform of phase relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi K_v v_{in}(\tau) d\tau$$

$$\Rightarrow \Phi_{out}(s) = 2\pi K_v v_{in}(s)$$

Note that K<sub>v</sub> is in units of Hz/V



### Varactor Implementation – Diode Version

- Consists of a reverse biased diode junction
  - Variable capacitor formed by depletion capacitance
  - Capacitance drops as roughly the square root of the bias voltage
- Advantage can be fully integrated in CMOS
- Disadvantages low Q (often < 20), and low tuning range (± 20%)



### A Recently Popular Approach – The MOS Varactor

- Consists of a MOS transistor (NMOS or PMOS) with drain and source connected together
  - Abrupt shift in capacitance as inversion channel forms
- Advantage easily integrated in CMOS
- Disadvantage Q is relatively low in the transition region
  - Note that large signal is applied to varactor transition region will be swept across each VCO cycle



#### A Method To Increase Q of MOS Varactor



- High Q metal caps are switched in to provide coarse tuning
- Low Q MOS varactor used to obtain fine tuning
- See Hegazi et. al., "A Filtering Technique to Lower LC Oscillator Phase Noise", JSSC, Dec 2001, pp 1921-1930

# Supply Pulling and Pushing



- Supply voltage has an impact on the VCO frequency
  - Voltage across varactor will vary, thereby causing a shift in its capacitance
  - Voltage across transistor drain junctions will vary, thereby causing a shift in its depletion capacitance
- This problem is addressed by building a supply regulator specifically for the VCO

# Injection Locking



 Noise close in frequency to VCO resonant frequency can cause VCO frequency to shift when its amplitude becomes high enough



### Example of Injection Locking

For homodyne systems, VCO frequency can be very close to that of interferers



- Injection locking can happen if inadequate isolation from mixer RF input to LO port
- Follow VCO with a buffer stage with high reverse isolation to alleviate this problem