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Wireless Systems

Direct conversion architecture
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Transmitter issues
- Meeting the spectral mask (LO phase noise & feedthrough, 

quadrature accuracy), D/A accuracy, power amp linearity
Receiver Issues
- Meeting SNR (Noise figure, blocking performance, channel 

selectivity, LO phase noise, A/D nonlinearity and noise), 
selectivity (filtering), and emission requirements
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Future Goals

Low cost, low power, and small area solutions
- New architectures and circuits!

Increased spectral efficiency
- Example:  GSM cellphones (GMSK) to 8-PSK (Edge)

Requires a linear power amplifier!
Increased data rates
- Example:  802.11b (11 Mb/s) to 802.11a (> 50 Mb/s)

GFSK modulation changes to OFDM modulation
Higher carrier frequencies
- 802.11b (2.5 GHz) to 802.11a (5 GHz) to ? (60 GHz)

New modulation formats
- GMSK, CDMA, OFDM, pulse position modulation

New application areas
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High Speed Data Links

A common architecture
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Transmitter Issues
- Intersymbol interference (limited bandwidth of IC 

amplifiers, packaging), clock jitter, power, area
Receiver Issue
- Intersymbol interference (same as above), jitter from 

clock and data recovery, power, area
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Future Goals

Low cost, low power, small area solutions
- New architectures and circuits!

Increased data rates
- 40 Gb/s for optical (moving to 120 Gb/s!)

Electronics is a limitation (optical issues getting significant)
- > 5 Gb/s for backplane applications

The channel (i.e., the PC board trace) is the limitation
High frequency compensation/equalization
- Higher data rates, lower bit error rates (BER), improved 

robustness in the face of varying conditions
- How do you do this at GHz speeds?

Multi-level modulation
- Better spectral efficiency (more bits in given bandwidth)
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This Class

Circuit AND system focus
- Knowing circuit design is not enough
- Knowing system theory is not enough

Circuit stuff
- RF issues: transmission lines and impedance transformers
- High speed design techniques
- Basic building blocks: amplifiers, mixers, VCO’s, digital 

components
- Nonidealities:  noise and nonlinearity

System stuff
- Macromodeling and simulation
- Wireless and high speed data link principles
- System level blocks:  PLL’s, CDR’s, transceivers
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The Goal – Design at Circuit/System Level

1. Design architecture with analytical models
May require new circuits – guess what they look like

2. Verify architectural ideas by simulating with ideal 
macro-models of circuit blocks

Guess macro-models for new circuits 
3. Add known non-idealities of circuit blocks 

(nonlinearity, noise, offsets, etc.) 
Go back to 1. if the architecture breaks!

4. Design circuit blocks and get better macro-models
Go back to 1. if you can’t build the circuit!
Go back to 1. if the architecture breaks!

5. Verify as much of system as possible with SPICE
6. Layout, extract, verify

Do this soon for high speed systems - iteration likely!
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Key System Level Simulation Needs

You need a fast simulator
- To design new things well, you must be able to iterate
- The faster the simulation, the faster you can iterate

You need to be able to add non-idealities in a 
controlled manner
- Fundamental issues with architectures need to be 

separated from implementation issues
An architecture that is fundamentally flawed should be 
quickly abandoned

You need flexibility
- Capable of implementing circuit blocks such as filters, 

VCO’s, etc.
- Capable of implementing algorithms
- Arbitrary level of detail
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A Custom C++ Simulator Will Be Used - CppSim

Blocks are implemented with C/C++ code
- High computation speed
- Complex block descriptions

Users enter designs in graphical form using Cadence 
schematic capture
- System analysis and transistor level analysis in the 

same CAD framework
Resulting signals are viewed in Matlab
- Powerful post-processing and viewing capability

Note:  Hspice used for circuit level simulations

CppSim is on Athena and freely downloadable at
http://www-mtl.mit.edu/~perrott



A Quick Preview of Homeworks and Projects
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HW1 – Transmission Lines and Transformers

High speed data link application:
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HW2 – High Speed Amplifiers
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HW3 – Amplifier Noise and Nonlinearity

Amplifier circuit
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HW4 – Low Noise Amplifiers and Mixers
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HW5 – Voltage Controlled Oscillators

Differential CMOS
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Project 1 - High Speed Frequency Dividers

High speed 
latches/registers
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HW6 – Phase Locked Loop Design

Integer-N synthesizer

Phase noise simulation
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Project 2 – GMSK Transmitter for Wireless Apps

Kv = 30 MHz/V
fo = 900 MHz

Gaussian
LPF

Data
Generator

Digital I/Q Generation

out(t)

T

T

t

Td

t

T

Loop Filter
Reference
Frequency

vin(t)
PFD

N

RF Transmit
Spectrum

0
ffRF

Trans.
Noise

Power
Amp

Kph

1 - z-1

cos(Φ)

sin(Φ)

D/A

D/A

Φfinst

90o

I

Q

Peak-to-Peak
Frequency
Deviation

Td

t

In
st

an
ta

ne
ou

s
Fr

eq
ue

nc
y

Data Eye

Limit
Amp

(100 MHz)

= 1
1 MHz

Includes
Zero-Order

Hold

Icp H(s)



M.H. Perrott MIT OCW

Project 2 – Accompanying Receiver
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Basics of Digital Communication
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Example:  A High Speed Backplane Data Link

Suppose we consider packaging issues at the receiver 
side (ignore transmitter packaging now for simplicity)
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Modulation Format

Binary, Non-Return to Zero (NRZ), Pulse Amplitude 
Modulation (PAM)
- Send either a zero or one in a given time interval Td- Time interval set by a low jitter clock
- Ideal signal from transmitter:
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Receiver Function

Two operations
- Recover clock and use it to sample data
- Evaluate data to be 0 or 1 based on a slicer
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Issue:  PC Board Trace is Not an Ideal Channel

Chip capacitance and inductance limits bandwidth
Transmission line effects cause reflections in the 
presence of impedance mismatch
Example:  transmit at 1 Gb/s across link in previous 
slide (assume bondwire inductance is zero)
- Signal at receiver termination resistor
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Eye Diagram for 1 Gb/s Data Rate

Wrap signal back onto itself every 2*Td seconds
- Same as an oscilloscope would do

Allows immediate assessment of the quality of the 
signal at the receiver (look at eye opening)
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Relationship of Eye to Sampling Time and Slice Level
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What Happens if We Increase the Data Rate?

Limited bandwidth and reflections cause intersymbol
interference (ISI)
Eye diagram at 10 Gb/s for same data link
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What is the Impact of the Bondwire Inductance?

Rule of thumb:  1 nH/mm for bondwire
- Assume 1 nH

Impact of inductance here increases bandwidth
- less ISI occurs
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How High of a Data Rate Can The Channel Support?

Raise it to 25 Gb/s

However, we haven’t considered other issues
- PC board trace attenuates severely at high frequencies

Bandwidth is < 5 GHz for 48 inch PC board trace (FR4)
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Multi-Level Signaling

Increase spectral efficiency by sending more than one 
bit during a symbol interval
- Example:  4-Level PAM at 12.5 Gb/s on same channel

Effective data rate:  25 Gb/s
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How Else Can We Reduce ISI?

Consider a system level view of the link
- Channel can be viewed as having an equivalent 

frequency response
Assumes linearity and time-invariance (accurate for most 
transmission line systems)
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Equalization

Undo channel frequency response with an inverse 
filter at the receiver
- Removes ISI!
- Can make it adaptive to learn channel
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The Catch

Equalization enhances noise
- Overall SNR may be reduced

Optimal approach is to make ISI and noise 
degradation about equal
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Alternative – Pre-emphasize at Transmitter

Put inverse filter at transmitter instead of receiver
- No enhancement of noise, but …
- Need feedback from receiver to learn channel
- Requires higher dynamic range/power from transmitter
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Best Overall Performance

Combine compensation and equalization
- Starting to see this for high speed links

Transmitter
Driver

Receiver
Detector

Channel

Trransmitter Receiver

Equalization
NoiseCompensation

(Pre-emphasis)



M.H. Perrott MIT OCW

What are the Issues with Wireless Systems?

Noise
- Need to extract the radio signal with sufficient SNR

Selectivity (filtering, processing gain)
- Need to remove interferers (which are often much larger!)

Nonlinearity
- Degrades transmit spectral mask
- Degrades selectivity for receiver

Multi-path (channel response)
- Degrades signal – nulls rather than ISI usually the issue
- Can actually be used to advantage!

We will look at BOTH broadband data links and 
wireless systems in this class
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