
Chapter 5


The Dirac Formalism and 
Hilbert Spaces 

In the last chapter we introduced quantum mechanics using wave functions 
defined in position space. We identified the Fourier transform of the wave 
function in position space as a wave function in the wave vector or momen­
tum space. Expectation values of operators that represent observables of 
the system can be computed using either representation of the wavefunc­
tion. Obviously, the physics must be independent whether represented in 
position or wave number space. P.A.M. Dirac was the first to introduce a 
representation-free notation for the quantum mechanical state of the system 
and operators representing physical observables. He realized that quantum 
mechanical expectation values could be rewritten. For example the expected 
value of the Hamiltonian can be expressed as 

Z 
ψ∗ (x) Hop ψ (x) dx = 

= 

hψ| Hop |ψi , 

hψ| ϕi , 

(5.1) 

(5.2) 

with 

|ϕi = Hop |ψi . (5.3) 

Here, |ψi and |ϕi are vectors in a Hilbert-Space, which is yet to be defined.

For example, complex functions of one variable, ψ(x), that are square inte­
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grable, i.e. Z 
ψ∗ (x) ψ (x) dx < ∞, (5.4) 

form  the Hilbert-Space of square integrable functions denoted  as  L2 . In Dirac 
notation this is Z 

ψ∗ (x) ψ (x) dx = hψ| ψi . (5.5) 

Orthogonality relations can be rewritten as Z 
ψ∗ (x) ψ (x) dx = hψm| ψni = δmn. (5.6) m n 

As  see  above expressions  look  like a bracket he called the  vector  |ψni a ket­
vector and hψ | a bra-vector. m

5.1 Hilbert Space 

A Hilbert Space is a linear vector space, i.e. if there are two elements |ϕi
and |ψi in this space the sum of the elements must also be an element of the 
vector space 

|ϕi + |ψi = |ϕ + ψi . (5.7) 

The sum of two elements is commutative and associative 

Commutative : |ϕi + |ψi = |ψi + |ϕi , (5.8) 

Associative : |ϕi + |ψ + χi = |ϕ + ψi + |χi . (5.9) 

The product of the vector with a complex quantity c is again a vector of the 
Hilbert-Space 

c |ϕi ≡ |cϕi . (5.10) 

The product between vectors and numbers is distributive 

Distributive : c |ϕ + ψi = c |ϕi + c |ψi . (5.11) 

In short every linear combination of vectors in a Hilbert space is again a 
vector in the Hilbert space. 
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5.1.1 Scalar Product and Norm 

There is a bilinear form defined by two elments of the Hilbert Space |ϕi and 
|ψi , which is called a scalar product resulting in a complex number 

hϕ| ψi = a .  (5.12) 

Ths scalar product obtained by exchanging the role of |ϕi and |ψi results in 
the complex conjugate number 

hψ |ϕi = hϕ |ψi ∗= a∗ . (5.13) 

The scalar product is distributive 

Distributive : hϕ |ψ1 + ψ2i = hϕ |ψ1i + hϕ |ψ2i . (5.14) 

hϕ |cψi = c hϕ |ψi . (5.15) 

And from Eq.(5.13) follows 

hcψ| ϕi = hϕ| cψi∗ = c∗ hψ| ϕi . (5.16) 

Thus if the complex number is pulled out from a bra-vector it becomes its 
complex conjugate. The bra- and ket-vectors are hermitian, or adjoint, to 
each other. The adjoint vector is denoted by the symbol+ 

(|ϕi)+ = hϕ| , (5.17) 

(hϕ|)+ = |ϕi . (5.18) 

The vector spaces of bra- and ket-vectors are dual to each other. To transform 
an arbitrary expression into its adjoint, one has to replace all operators and 
vectors by the adjoint operator or vector and in addition the order of the 
elements must be reversed. For example 

(c|ϕi)+ = c∗ hϕ| , (5.19) 

hϕ| ψi + = hϕ| ψi∗ = hψ| ϕi . (5.20) 

This equation demands that a scalar product of a vector with itself is always 
real. Here, we even demand that it is positive 

hϕ |ϕi > 0, real  .  (5.21) 



244 CHAPTER 5. THE DIRAC FORMALISM AND HILBERT SPACES 

The equal sign in Eq.(5.21) is only fulfilled for the null vector, which is defined 
by 

|ϕi + 0 = |ϕi . (5.22) 

Note, we denote the null vector not with the symbol |0i but rather with the 
scalar 0. Because  the  symbol  |0i is reserved for the ground state of a system. 
If the scalar product of a vector with itself is always positive, Eq.(5.21), 

then one can derive from the scalar product the norm of a vector according 
to p

kϕk = hϕ |ϕi . (5.23) 

For vectors that are orthogonal to each other we have 

hϕ |ψi = 0  (5.24) 

without having one of them be the null vector. 

5.1.2 Vector Bases 

The dimensions of a Hilbert space are countable, i.e. each dimension can 
be assigned a whole number and thereby all dimensions are referenced in a 
unique way with 1, 2, 3, .... A vector space that is a Hilbert space has the 
following additional properties. 

Completeness: 

If there is a sequence of vectors in a Hilbert space |ϕ1i , |ϕ2i , |ϕ3i , |ϕ4i , ... 
that fulfills Cauchy’s convergence criterion then the limit vector |ϕi is also 
an element of the Hilbert space. Cauchy’s convergence criterion states that 
if kϕn − ϕmk < ε,  for some n,m > N(ε) the sequence converges uniformly 
[2]. 

Separability: 

The Hilbert space is separable. This indicates that for every element |ϕi in 
the Hilbert space there is a sequence with |ϕi as the limit vector. 
Every vector in the Hilbert space can be decomposed into linear indepen­

dent basis vectors ψni . The number of basis  vectors can  be  infinite | X 
|ϕi = cn |ψni . (5.25) 

n 
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The components cn of the vector |ϕi with respect to the basis |ψni are com­
plex numbers denoted with index n. It is advantageous to orthonormalize 
the basis vectors 

hψn| ψmi = δnm . (5.26) 

The components of the vector |ϕi can then be determined easily by X X 
hψm| ϕi = cn hψm| ψni = cnδmn, (5.27) 

n n 

or 
cm = hψm| ϕi , (5.28) 

This leads to X 
|ϕi = |ψni hψn| ϕi . (5.29) 

n 

5.2 Linear Operators in Hilbert Spaces 

5.2.1 Properties of Linear Operators 

An operator L is defined as a mapping of a vector |ϕi onto another vector 
|ψi of the Hilbert space 

L = ψi . (5.30) |ϕi |
A linear  operator  L has the property that it maps a linear combination 

of input vectors to the linear combination of the correponding maps 

L (a |ϕ1i+ b |ϕ2i) = (a L |ϕ1i+ b L |ϕ2i) 
= a |ψ1i+ b |ψ2i , for a, b ∈ C. (5.31) 

The sum of two linear operators is defined as 

(L+M) |ϕi = L |ϕi+M |ϕi . (5.32) 

And the product of two operators is defined as 

L M  |ϕi = L (M |ϕi) . (5.33) 

The null element and 1-element of the operators is denoted as 0, and  1. 
Often we will not bold face these operators, especially in products, where a 
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scalar has the same meaning. The two operators are defined by their action 
on arbitrary vectors of the Hilbert space 

0 |ϕi = 0, ∀ |ϕi , (5.34) 

1 |ϕi = |ϕi , ∀ |ϕi (5.35) 

In generally, the multiplication of two operators is not commutative 

L M  |ϕi 6= ML |ϕi , ∀ |ϕi , (5.36) 

or in short 
L M  6= M L. (5.37) 

The expression 

[L, M] = L M  − M L  (5.38) 

is therefore called the commutator between L and M. If [L, M] =  0, the 
operators commute. The following rules for commutators apply: 

[L, M] = − [M, L] , (5.39) 

[L, L] = 0 , (5.40) 

[L, 1] = 0 , (5.41) £ ¤
L, L−1 = 0 , (5.42)


[L,aM] = a [L, M] , (5.43)


[L1 + L2, M] = [L1, M] + [L2, M] , (5.44)


[L, M] = − [M, L] (5.45)


[L1L2, M] = [L1, M] L2 + L1 [L2, M] , (5.46) 

[M, L1L2] = [M, L1] L2 + L1 [M, L2] . (5.47) 

Often the anticommutator is also used. It is defined as 

[L, M]+ = L M  + M L . (5.48) 

If [L, M]+ = 0, the operators are called anti-commuting. 
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5.2.2 The Dyadic Product 

Two vectors in the Hilbert space can not only be used to build a scalar 
product but rather what is called a dyadic product, which is an operator 

|αi hβ| . (5.49) 

The dyadic product is the formal product between a ket- and a bra-vector. 
If applied to a vector, it projects the vector onto the state |βi and generates 
a new vector in parallel to |αi with a magnitude equal to the projection 

|αi hβ|ψi = hβ|ψi |αi . (5.50) 

As we have seen from Eq.(5.29), if |ψni built a complete orthonormal basis, 
then X 

|ϕi = |ψni hψn| ϕi , ∀ |ϕi , .  (5.51) 
n 

Eq.(5.35) implies X 
1 = |ψni hψ | . (5.52) n

n 

When applied to an operator from the left and right side Ã ! X X 
1 L 1  = |ψmi hψm| L |ψni hψn| (5.53) 

m nXX 
= Lmn ψ n| mi hψ |

m n 

with the matrix elements 

Lmn = hψm|L |ψni . (5.54) 

The matrix elments Lmn represent the operator in the chosen base |ψni . 
Once we choose a base and represent vectors and operators in term of this 
base, the components of the vector and the operator can be collected in a 
column vector and a matrix. The table below shows a comparison between a 
representation based on Hilbert space vectors and operators in term of vectors 
and matrices in an euclidian vector space. Initially matrix mechanics was 
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developed by Heisenberg independently from Schroedingers wave mechanics. 
The Dirac representation in terms of bra- and ket-vectors unifies them and 
shows that both forms are isomorph 

.


Ket-vector Column vector ⎛ ⎞ 

|ϕai = 
X 

n 

an |ψni 
⎜⎝ 

a1 

a2 
. . . 

⎟⎠ 

Bra-vector X Row vector 

hϕ| = 
n 

a∗ 
n hψn| 

¡ 
a∗ 
1 a∗ 

2 · · ·  
¢ 

Inner product Scalar product ⎛ ⎞ 

hϕa |ϕbi = 
X 

m 

X 

n 

a∗ 
mbn hψm |ψni X 

¡ 
a∗ 
1 a∗ 

2 · · ·  
¢ 
· ⎜⎝ 

b1 

b2 
. . . 

⎟⎠ 

= 
n 

a∗ 
nbn =a∗ 

1b1 + a∗ 
2b2 + · · ·  

Operator Matrix ⎛ ⎞ 

L = 
X 

m,n 

Lmn |ψmi hψn| 
⎜⎝ 

L11 L12 · · ·  
L21 L22 · · ·  
. . . 

. . . 
. . . 

⎟⎠ 

Dyadic Product ⎛ ⎞ 

|ϕai hϕb| = 
X 

m,n 

amb
∗ 
n |ψmi hψn| 

⎜⎝ 

a1 

a2 
. . . 

⎟⎠ · ¡ b∗ 
1 b∗ 

2 · · ·  
¢ 
= 

⎛ ⎞ 

= ⎜⎝ 

a1b
∗ 
1 a1b

∗ 
2 · · ·  

a2b
∗ 
1 a2b

∗ 
2 · · ·  

. . . 
. . . 

. . . 

⎟⎠ 

5.2.3 Special Linear Operators 

5.2.4 Inverse Operators 

The operator inverse to a given operator L is denoted as L−1 

∀ |ϕi , |ψi = L |ϕi = ⇒ |ϕi = L−1 |ψi , (5.55) 



249 5.2. LINEAR OPERATORS IN HILBERT SPACES 

which leads to 

LL−1 = 1 (5.56) 

The inverse of a product is the product of the inverse in inverse order 

(ML)−1 = L−1M−1 (5.57) 

5.2.5 Adjoint or Hermitian Conjugate Operators 

The adjoint (hermitian conjugate) operator L+ is defined by 

hϕ| L+ |ψi = (hψ| L |ϕi)∗ = hψ| L |ϕi∗ , (5.58) 

here |ϕi and |ψi are arbitrary vectors in a Hilbert space. Note, that if the 
adjoint of an expression is formed, each component gets conjugated and the 
order is reversed. For example 

(L |ϕi)+ = hϕ| L+ , (5.59) ¡ ¢+ 
L+ |ϕi = hϕ| L (5.60) 

If 

|Lϕi = L |ϕi . (5.61) 

there is 

hLϕ| = hϕ| L+ (5.62) 

and ­ ¯ ® 
hψ| L |ϕi = hψ| Lϕi = L+ψ¯ ϕ (5.63) 

The matrix elements of the adjoint operator are 

L+ L+ 
mn = hψm| |ψni = hψn| L |ψmi = L∗ 

nm (5.64) 

The following rules apply to adjoint operators ¡ ¢+ 
L+ = L, (5.65) 

(aL)+ = a∗L+ , (5.66) 

(L + M)+ = L++M+ , (5.67) 

(L M)+ = M+ L+ . (5.68) 
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5.2.6 Hermitian Operators 

If the adjoint operator L+ is identical to the operator itself, then we call the 
operator hermitian 

L = L+ . (5.69) 

Hermitian operators have real expected values. Observables are represented 
by hermitian operators. 

5.2.7 Unitary Operators 

If the inverse of an operator U is the adjoint operator 

U−1 = U+ , (5.70) 

then this operator is called a unitary operator and 

U+U = UU+ = 1. (5.71) 

If the operator U is unitary and H is a hermitian operator, then the product 
UHU−1 is also a hermitian operator. ¡ ¢+ ¡ ¢+ 

UHU−1 = U−1 H+U+ = UHU−1 . (5.72) 

5.2.8 Projection Operators 

The dyadic product 
Pn = |ψni hψ | , (5.73) n

is a projection operator Pn that projects a given state |ϕi onto the unit 
vector ψ| ni 

Pn |ϕi = |ψni hψn|ϕi . (5.74) 

If |ϕi is represented in the orthonormal base |ψni X 
|ϕi = cn |ψni , (5.75) 

n 

we obtain 
Pn |ϕi = cn |ψni . (5.76) 
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By construction, projection operators are hermitian operators. Besides op­
erators that project on vectors, there are also operators that project on sub­
spaces of the Hilbert space X 

PU = |ψni hψn| . (5.77) 
U 

Here, the orthonormal vectors |ψni span the sub-space U . Projection  opera­
tors are idempotent 

Pk
n = Pn, for k > 1. (5.78) 

5.3 Eigenvalues of Operators 

In chapter 4, we studied the eigenvalue problem of differential operators. 
Here, we want to formulate the eigenvalue problem of operators in a Hilbert 
space. An operator L in a Hilbert space with eigenvectors |ψni fulfills the 
equations 

L |ψni = Ln |ψni , (5.79) 

with eigenvalues Ln. If there exist several different eigenvectors to the same 
eigenvalue Ln, this eigenvalue is called degenerate. For example, the energy 
eigenfunctions of the hydrogen atom are degenerate with respect to the in­
dices l and m. The set of all eigenvalues is called the eigenvalue spectrum 
of the operator L. As shown earlier the eigenvalues of hermitian operators 
are real and  the eigenvectors to  different eigenvalues are orthogonal to each 
other, because 

hψm|L |ψni = Ln hψm |ψni = Lm hψm |ψni , (5.80) 

or 
(Ln − Lm) hψm |ψni = 0. (5.81) 

If the eigenvectors of the operator L form a complete base of the Hilbert 
space, the operator L is represented in this base by a diagonal matrix 

Lmn = hψm|L |ψni = Ln hψm |ψni = Ln δmn (5.82) 

The operator can then be written in its spectral representation X X 
L = Ln |ψni hψn| = LnPn . (5.83) 

n n 
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5.4 Eigenvectors of Commuting Operators 

Two operators, A and B, that commute with each other have a common set 
of eigenvectors. To proove this theorem, we assume that the eigenvalue spec­
trum of the operator A is non degenerate. The eigenvectors and eigenvalues 
of operator A are |ψni and An, respectively 

A |ψni = An |ψni . (5.84) 

Using 
[A, B] = 0, (5.85) 

we find 

Ã 
hψ |! 

AB − BA |ψni = 0  (5.86) mX 
hψm|A |ψni hψn| B − BA |ψni = 0  

n 

(Am − An) hψm|B |ψni = (Am − An)Bmn = 0 . 

Since the eigenvalues are assumed to be not degenerate, i.e. Am = An, the 6
matrix Bmn must be diagonal, which means that the vector |ψni has also to 
be an eigenvector of operator B. If the eigenvalues are degenerate, one can 
always choose, in the sub-space that belongs to the degenerate eigenvalue, a 
base that are also eigenvectors of B. The operator B thus eventually has no 
degeneracies in this sub-space and therefore, the eigenvalues of B may help 
to uniquely characterize the set of joint eigenvectors. 
Also the reverse is true. If two operators have a joint system of eigenvec­

tors, they commute. This is easy to see from the spectral representation of 
both operators. 
Example: We define the parity operator Px which, when applied to a 

wave function of a particle in one dimension ψ(x), changes the sign of the 
position x 

Pxψ(x) = ψ(−x). (5.87) 

The Hamiltonian of a particle in an inversion symmetric potential V (x), i.e. 

V (x) = V (−x), (5.88) 

commutes with the parity operator. Then the eigenfunctions of the Hamilto­
nian are also eigenfunctions of the parity operator. The eigenfunctions of the 
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parity operator are the symmetric or antisymmetric functions with eigenval­
ues 1 and −1, respectively. Therefore, the eigenfunctions of a Hamiltonian 
with symmetric potential has symmetric and antisymmetric eigenfunctions, 
see box potential and harmonic oscillator potential. 

5.5	 Complete System of Commuting Opera-
tors 

In the case of the hydrogen atom, we had to use three qunatum numbers 
n, l, and m to characterize the energy eigenfunctions completely. Without 
proof, the indices l and m characterize the eigenvalues of the square of the 
angular momentum operator L� 2, and  of  the  z-component of the angular mo­
ment Lz with eigenvalues l (l + 1) ~2 and m~, respectively. One can show, 
that the Hamilton operator of the hydrogen atom, the square of the angular 
momentum operator and the z-component of the angular moment operator 
commute with each other and build a complete system of commuting op­
erators (CSCO), whose eigenvalues enable a unique characterization of the 
energy eigenstates of the hydrogen atom. 

5.6	 Product Space 

Very often in quantum mechanics one deals with interacting systems, for 
example system A and system B. The state space of each isolated system 
is Hilbert space HA and Hilbert space HB spanned by a complete base |ψni 
A and |ψni B, respectively. LA and MB are operators on each of the Hilber 
spaces of the individual systems. The Hilbert space of the total system is 
the product space 

H = HA ⊗ HB.	 (5.89) 

The vectors in this Hilbert space are given by the direct product of the 
individual vectors and one could choose as a base in the product space 

|χnmi = |ψniA ⊗ |ψmiB = |ψniA |ψmiB . (5.90) 

Operators that only act on system A can be  extended to  operate  on  the  
product space by 
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L = LA ⊗ 1B. (5.91) 

or similar for operators acting on system B 

M = 1A ⊗ MB. (5.92) 

The product of both operators is then 

LM = LA ⊗ MB. (5.93) 

An operator in this product space acts on a vector in the following way 

LM |χnmi = L |ψniA ⊗ M |ψmiB . (5.94) 

Since, the vecotrs |ψniA and |ψmiB build a complete base for system A and 
B, respectively, the product vectors in Eq.(5.90) build a complete base for 
the interacting system and each state can be written in terms of this base X X 

|χi = amn |χnmi = amn |ψniA ⊗ |ψmiB . (5.95) 
m,n m,n 

5.7 Quantum Dynamics 

In chapter 4, we derived the Schroedinger Equation in the x-represenation. 
The stationary Schroedinger Equation was written as an eigenvalue problem 
to the Hamiltonian operator, which was then a differential operator. With 
the Dirac formulation we can rewrite these equations without refering to a 
special representation. 

5.7.1 Schroedinger Equation 

In the Dirac notation the Schroedinger Equation is 

j~ 
∂ |Ψ 

∂t 
(t)i 

= H |Ψ (t)i . (5.96) 

H is the Hamiltonian operator; it determines the dynamics of the quantum 
system. 

H = 
p̃2 

+ V(x̃). (5.97) 
2m 
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The Hamiltonian operator is the generator of motion in a quantum system. 
Here p̃ and x̃ and functions of them are operators in the Hilbert space. |
is the Hilbert space vector describing fully the system’s quantum state at time 

Ψ (t)i 

t. When looking for states that have a harmonic temporal behaviour 

|Ψ (t)i = ejEnt/~ |ψni , (5.98) 

we obtain the stationary Schroedinger Equation 

H |ψni = En |ψni , (5.99) 

that determines the energy eigenstates of the system. If the |ψni build a 
complete basis of the Hilbert space, H, the system is dynamically evolving, 
the most general time dependent solution of the Schroedinger Equation is 
then a superposition of all energy eigenstates X 

|Ψ (t)i = an e
jEnt/~ |ψni . (5.100) 

n 

5.7.2 Schroedinger Equation in x-representation 

We can return to wave mechanics by rewriting the abstract Schroedinger 
Equation in the eigenbase |xi of the position operator. For simplicity in 
notation, we only consider the one dimensional case and define that there 
exists the following eigenvectors 

x |x0i = x0 |x0i , (5.101) 

with the orthogonality relation 

hx |x0i = δ(x − x0). (5.102) 

Note, since the position operator has a continuous spectrum of eigenvalues 
the orthogonality relation is a dirac delta function rather than a delta-symbol. 
The completness relation using this base is expressed in the unity operator Z 

1 = |x0i hx0| dx0 , (5.103) 

rather then a sum as in Eq.(5.52). Inserting this unity operator in the 
Schroedinger Equation (5.96) and projecting from the left with hx|, we  obtain  Z 

∂ 
j ~ 

∂t 
hx |Ψ (t)i = hx| H |x0i hx0|Ψ (t) i dx0. (5.104) 
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The expression hx |Ψ (t)i is the probability amplitude that a position mea­
surement on the system in state |Ψ (t)i yields the value x, which is precisely 
the meaning of the wave function 

Ψ (x, t) = hx |Ψ (t)i (5.105) 

in chapter 4. Using the eigenvalue property of the states and the orthogo­
nality relations we obtain from Eq.(5.104) 

∂ ~ ∂ 
j ~ Ψ (x, t) = H(x, p = )Ψ (x, t) . (5.106) 

∂t j ∂x

5.7.3 Canonical Quantization 

Thus the dynamics of a quantum system is fully determined by its Hamil­
tonian operator. The Hamiltonian operator is usually derived from the 
classical Hamilton function according to the Hamilton-Jacobi formulation of 
Classical Mechanics [3]. The classical Hamilton function H({qi} , {pi}) is a 
function of the position coordinates of a particle xi or generalized coordinates 
qi and the corresponding momentum coordinates pi. The classical equations 
of motion are found by 

q̇i(t) =  
∂ 
∂pi 

H({qi} , {pi}) , (5.107) 

ṗi(t) = − 
∂ 
∂qi 

H({qi} , {pi}) . (5.108) 

In quantum mechanics the Hamiltonian function and the position and 
momentum coordinates become operators and quantization is achieved by 
imposing on position and momentum operators that are related to the same 
degree of freedom, for example the x-coordinate of a particle and the associate 
momentum px, canonical commutation relations 

H({qi} , {pi}) H({qi} , {pi}), (5.109) ⇒ 

[qi, pj ] = j ~δij. (5.110) 

Imposing this commutation relation implies that position and momentum 
related to one degree of freedom can not be measured simultaneously with 
arbitrary precision and Heisenberg’s uncertainty relation applies to the pos­
sible states the system can take on. 
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5.7.4 Schroedinger Picture 

In the Schroedinger picture the quantum mechanical state of the system is 
evolving with time. If there is no explicit time dependence in the operators 
then the operators stay time independent. The Schroedinger Equation (5.96) 

j~ 
∂ |Ψ (t)i 

∂t 
= H |Ψ (t)i , (5.111) 

plus the initial state 

|Ψ (t = 0)i = |Ψ (0)i , (5.112) 

unquely determine the dynamics of the system. The evolution of the quantum 
state vector can be described as a mapping of the initial state by a time 
evolution operator. 

|Ψ (t)i = U(t) |Ψ (0)i . (5.113) 

If this solution is substituted into the Schroedinger Equation (5.111) it follows 
that the time evolution operator has to obey the equation 

∂ 
j ~ U(t) =  H U(t). (5.114) 

∂t 

For a time independent Hamiltonian Operator the formal integration of this 
equation is 

U(t) =  exp [−jHt/~] . (5.115) 

The time evolution operator is unitary 

U−1(t) =  U+(t) , (5.116) 

because the Harmiltonian operator is hermitian, and therefore the norm of 
an initial state is preserved. The initial value for the time evolution operator 
is 

U(t = 0) =  1. (5.117) 

The expected value of an arbitrary operator A is given by 

hΨ (t)| Ψ (t)i = hΨ (0)| U+(t)AU(t) |Ψ (0)i . (5.118) 
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5.7.5 Heisenberg Picture 

Since the physically important quantities are the expected values, i.e. the 
outcome of experiments, Eq.(5.118) can be used to come up with an alter­
native formulation of quantum mechanics. In this formulation, called the 
Heisenberg picture, the operators are evolving in time according to 

AH (t) = U
+(t)AU(t), (5.119) 

and the state of the system is time independent and equal to its initial state 

|ΨH (t)i = |ΨS (0)i . (5.120) 

Clearly an expected value for a time dependent operator using the Heisenberg 
state (5.120) is identical with Eq.(5.116). 
This is identical to describing a unitary process in an eucledian vector 

space. Scalar products between vectors are preserved, if all vectors are un­
dergoing a unitary transformation, i.e. a rotation for example. An alternative 
description is that the vectors are time independent but the coordinate sys­
tem rotates in the opposite direction. When the coordinate system changes, 
the operators described in the time dependent coordinate system become 
time dependent themselves. 
From the definition of the time evolution operator we find immediately 

an equation of motion for the time dependent operators of the Heisenberg 
picture 

j~ 
∂AH (t) 

∂t 
= 

µ
j~ 

∂U+(t) 
∂t 

¶ 

AS U(t) +U
+(t)AS 

µ
j ~ 

∂U(t) 
∂t 

¶
(5.121) 

+U+(t)

µ
j~ 
∂AS 

∂t 

¶ 
U(t) 

j~ 
∂AH (t)

= −U+(t)H+ASU(t) +U
+(t)ASHU(t) (5.122) 

∂t µ ¶
+U+(t) j~ 

∂AS 
U(t)

∂t 

Using the relation U+(t)U(t) = U(t)U+(t) =  1 and inserting it between 
the Hamiltonian operator and the operator A, we  finally end up with the 



259 5.8. THE HARMONIC OSCILLATOR 

Heisenberg equations of motion for the Heisenberg operators µ ¶
∂	 ∂A 

j~ AH (t) =  −HH AH +AH HH + j~	 (5.123) 
∂t	 ∂t µ ¶ H 

∂A 
= [AH ,HH ] + j ~	 (5.124) 

∂t H 

with 

HH	 = U+(t)HS U(t) (5.125) 

= HS for conservative systems, i.e. HS = HS(t) (5.126) 6

Note, that the last term in Eq.(5.124) is only present if the Schroedinger 
operators do have an explicit time dependence, a case which is beyond the 
scope of this class. 

5.8 The Harmonic Oscillator 

To illustrate the beauty and efficiency in describing the dynamics of a quan­
tum system using the dirac notation and operator algebra, we reconsider the 
one-dimensional harmonic oscillator discussed in section 4.4.2 and described 
by the Hamiltonian operator 

p2	 1 2H =	 + K x , (5.127) 
2m	 2 

with 
[x,p] = j~. (5.128) 

5.8.1	 Energy Eigenstates, Creation and Annihilation 
Operators 

It is advantageous to introduce the following normalized position and mo­
mentum operators r 

X 

P 

= 

= 

K 
~ω0 

x p
m~ω0 p 

(5.129) 

(5.130) 
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with ω0 =

K . The Hamiltonian operator and the commutation relationship 
m 

of the normalized position and momentum operator resume the simpler forms 

~ω0 ¡ ¢ 
H = P2 +X2 , (5.131) 

2 
[X, P] = j . (5.132) 

Algebraically, it is very useful to introduce the nonhermitian operators 

1 
a = (X + jP) , (5.133) √

2 
1 

a + = √
2
(X−jP) , (5.134) 

which satisfy the commutation relation £ ¤
a, a + = 1. (5.135) 

We find 

1 ¡ ¢ j 1 ¡ ¢ 
aa + =

2 
X2 +P2 − 

2
[X, P] =

2 
X2 +P2 + 1  , (5.136) 

1 ¡ ¢ j 1 ¡ ¢ 
a + a = X2 +P2 + [X, P] =  X2 +P2 − 1 , (5.137) 

2 2 2 

and the Hamiltonian operator can be rewritten in terms of the new operators 
a and a+ as 

~ω0 µ¡ ¶ ¢ 
H = a + a + aa + (5.138) 

2 
1 

= ~ω0 a + a+ . (5.139) 
2

We introduce the operator 
N = a + a, (5.140) 

which is a hermitian operator. Up to an additive constant 1/2 and a scaling 
factor ~ω0 equal to the energy of one quantum of the harmonic oscillator it 
is equal to the Hamiltonian operator of the harmonic oscillator. Obviously, 
N is the number operator counting the number of energy quanta excited in a 
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harmonic oscillator. We assume that the number operator N has eigenvectors 
denoted by |ni and corresponding eigenvalues Nn 

N |ni = a + a |ni = Nn |ni . (5.141) 

We also assume that these eigenvectors are normalized and since N is her­
mitian they are also orthogonal to each other 

hm |ni = δmn. (5.142) 

Multiplication of this equation with the operator a and use of the commuta­
tion relation (5.135) leads to 

¡ a a  ¢ + a |ni = Nna |ni (5.143) 

a + a+ 1 a |ni = Nna |ni (5.144) 

N a |ni = (Nn − 1)a |ni (5.145) 

Eq.(5.143) indicates that if |ni is an eigenstate to the number operator N 
then the state a |ni is a new eigenstate to N with eigenvalue Nn −1. Because 
of this property, the operator a is called a lowering operator or annihilation 
operator, since application of the annihilation operator to an eigenstate with 
Nn quanta leads to a new eigenstate that contains one less quantum 

a |ni = C |n − 1i , (5.146) 

where C is a yet undetermined constant. This constant follows from the 
normalization of this state and being an eigenvector to the number operator. 

hn a + a ni = C 2 , (5.147) | |
C = 

√|
n. 

| 
(5.148) 

Thus 
a |ni = 

√
n |n − 1i , (5.149) 

Clearly, if there is a state with n = 0 application of the annihilation operator 
leads to the null-vector in this Hilbert space, i.e. 

a |0i = 0, (5.150) 

and there is no other state with a lower number of quanta, i.e. N0 = 0 and 
Nn = n. This is the ground state of the harmonic oscillator, the state with 
the lowest energy. 
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If a is an annihilation operator for energy quanta, a+ must be a cre­
ation operator for energy quanta, otherwise the state |ni would not fulfill 
the eigenvalue equation Eq.(5.141) 

a + a = n (5.151) 

a +
√
n 

|ni 
= n 

|ni 
(5.152) 

+ a 

|n − 1i 
= 
√|
n

ni 
(5.153) |n − 1i |ni 

or 
+ a |ni =

√
n + 1 |n + 1i . (5.154) 

Starting from the energy ground state of the harmonic oscillator |0i with 
energy ~ω0/2 we can generate the n-th energy eigenstate by n-fold application 
of the creation operator a+ and proper normalization 

+ ni = p 1 ¡
a 
¢n 
0i , (5.155) |

(n + 1)!  
|

with 
H |ni = En |ni , (5.156) 

and µ ¶
1 

En = ~ω0 n+ . (5.157) 
2

5.8.2 Matrix Representation 

We  can express  the normalized position and  momentum  operators as func­
tions of the creation and annihilation operators 

1 ¡ ¢ 
X = a + + a , (5.158) √

2 
j ¡ ¢ 

P = √
2 
a +−a . (5.159) 

These operators do have the following matrix representations 
+hm| a |ni = 

√
nδm,n−1 , hm| a |ni =

√
n + 1δm,n+1 , (5.160) 

a + a = nδm,n , aa + ni = (n + 1) δm,n , (5.161) hm| |ni ³ 
hm| | ´ 

hm| X |ni = √1
2 

√
n + 1δm,n+1 +

√
nδm,n−1 , (5.162) ³ ´ 

hm| P |ni = √j
2 

√
n + 1δm,n+1 −

√
nδm,n−1 , (5.163) 
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hm a +2 ni = (n + 1) (n + 2)δm,n+2 , (5.165) 

1 (2n + 1)δm,n + n(n − 1)δm,n−2 hm

|

| X2 

|

|ni =
2 

µ 

+
p
(n + 1) (

p ¶ 

, (5.166) 
n + 2)δm,n+2 

1 (2n + 1)δm,n − n(n − 1)δm,n−2 hm P2 ni =
2 

µ p
(n + 1) (

p ¶ 

. (5.167)| | − n + 2)δm,n+2 

5.8.3 Minimum Uncertainty States or Coherent States 

From the matrix elements calculated in the last section, we find that the 
energy or quantum number eigenstates |ni have vanishing expected values 
for position and momentum. This also follows from the x-representation 
ψ (x) = hx |ni studied in section 4.4.2n

hn| X |ni = 0 , hn| P |ni = 0 , (5.168) 

and the fluctuations in position and momentum are then simply 

1 1 hn| X2 |ni = n +
2 

, hn| P2 |ni = n +
2 
. (5.169) 

The minimum uncertainty product for the fluctuations 

1 
∆X = 

q
hn| X2 |ni − hn| X |ni 2 = n +

2 
, (5.170) 

12∆P = 
q
hn| P2 |ni − hn| P |ni = n +

2 
. (5.171) 

is then 
1 

∆X ∆P = n + . (5.172)· 
2 

Only the ground state n = 0 is a minimum uncertainty wave packet, since it 
satisfies the eigenvalue equation 

a |0i = 0, (5.173) 

where 
1 

a = (X + jP) , (5.174)√
2 
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see problem set 8. In fact we can show that every eigenstate to the annihi­
lation operator 

a |αi = α |αi ,	 for α�C (5.175) 

is a minimum uncertainty state. We obtain for expected values of position 
or momentum in these states 

hα| a |αi = α ,  hα| a + |αi = α∗, ¡ ¢ (5.176) 

hα| a + a |αi = |α| 2 , hα| aa + |αi = |α| 2 + 1  , (5.177) 
1	 jhα| X |αi =	 √
2
(α + α∗) , hα| P |αi = √

2
(α − α∗) , (5.178) 

and for its squares 

hα| a + a 
2 

|αi = |
α

α
2

| 2 , hα|
+2 

aa + |αi =
¡
|α| 2 + 1  

¢ 
, (5.179) 

hα| a |αi = , hα| a |αi = α∗2 , (5.180) 

hα| X2 |αi =	
2

1 ¡
α2 + 2α∗α + α∗2 + 1  

¢ 
= hα| X |αi 2 + 

2

1 
, (5.181) 

1 ¡ ¢ 1 hα| P2 |αi =	
2
−α2 + 2α∗α − α∗2 + 1  = hα| P |αi 2 +

2 
. (5.182) 

Thus the uncertainty product is at its minimum 

1 
∆X ∆P =

2	
∀ α�C. (5.183) · 

In fact one can show that the statistics of a position or momentum measure­
ment for a harmonic oscillator in this state follows a Gaussian satistics with 
the average and variance given by Eqs.(5.178), (5.181) and (5.182). This can 
be represented pictorially in a phase space diagram as shown in Figure 5.1 
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<P> 

<X> X 

2ΔP 

2ΔXP 

0 

α 

Figure 5.1: Representation of a minimum uncertainty state of the harmonic 
oscillator as a phase space distribution. 

5.8.4 Heisenberg Picture 

The Heisenberg equations of motion for a linear system like the harmonic 
oscillator are linear differential equations for the operators, which can be 
easily solved. From Eqs.(5.124) we find 

j~ 
∂ 
∂t 
aH (t) = [aH , H] (5.184) 

= ~ω0aH , (5.185) 

with the solution 

aH (t) = e−jω0t aS . (5.186) 

Therefore, the expectation values for the creation, annihilation, position and 
momentum operators are identical to those of Eqs.(5.176) to (5.182); we only 
need to subsitute α αe−jω0t . We may again pictorially represent the time →
evolution of these states as a probability distribution in phase space, see 
Figure 5.2. 
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P 

<P> 

<X> X 

2ΔP 

2ΔX 

0 

α 

αe
-j tωO

Figure 5.2: Time evolution of a coherent state in phase space. 

5.9	 The Kopenhagen Interpretation of Quan-
tum Mechanics 

5.9.1	 Description of the State of a System 

At a given time t the state of a system is described by a normalized vector 
|Ψ(t)i in the Hilbert space, H. The Hilbert space is a linear vector space. 
Therefore, any linear combination of vectors is again a possible state of the 
system. Thus superpositions of states are possible and with it come interfer­
ences. 

5.9.2	 Description of Physical Quantities 

Measurable physical quantities, observables, are described by hermitian op­
erators A = A+ . 
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5.9.3 The Measurement of Observables 

An observable has a spectral representation in terms of eigenvectors and 
eigenvalues, which can be discrete or continuous, here we discuss the discrete 
case X 

A = An |Ani hAn| , (5.187) 
n 

The eigenvectors are orthogonal to each other and the eigenvalues are real 

hAn| An0 i = δn,n0 . (5.188) 

Upon a measurement of the observable A of the system in state |Ψ(t)i the 
outcome can only be one of the eigenvalues An of the observable and the 
probability for that event to occur is 

pn = | hAn| Ψ(t)i| 2 . (5.189) 

If the eigenvalue spectrum of the operator A is degenerate, the probabilities 
of the probabilities of the different states to the same eigenvector need to be 
added. 
After the measurement the system is in the eigenstate |Ani corresponding 

to the eigenvalue An found in the measurement, which is called the reduc­
tion of state[4]. This unphysical reduction of state is only necessary as a 
shortcut for the description of the measurement process and the fact that 
the system becomes entangled with the state of the macroscopic measure­
ment equipment. This entanglement leads to a necessary decoherence of the 
superposition state of the measured system, which is equivalent to assuming 
a reduced state. 
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