
Chapter 4 

Schroedinger Equation 

Einstein’s relation between particle energy and frequency Eq.(3.83) and de 
Broglie’s relation between particle momentum and wave number of a corre­
sponding matter wave Eq.(3.84) suggest a wave equation for matter waves. 
This search for an equation describing matter waves was carried out by Erwin 
Schroedinger. He was successful in the year 1926. 
The energy of a classical, nonrelativistic particle with momentum p� that 

is subject to a conservative force derived from a potential V (�r) is 

2 

E = 
p�

+ V (�r) . (4.1) 
2m 

For simplicity lets begin first with a constant potential V (�r) = V0 = const. 
This is the force free case. According to Einstein and de Broglie, the dis­
persion relation between ω and �k for waves describing the particle motion 
should be 

~2�k2 

~ω = + V0. (4.2) 
2m 

Note, so far we had a dispersion relation for waves in one dimension, where 
the wavenumber k(ω), was a function of frequency. For waves in three dimen­
sions the frequency of the wave is rather a function of the three components 
of  the wave vector.  Each wave with a given wave vector  �k has the following 
time dependence 

ej(
�k·�r−ωt), with ω = 

~�k2 

+ 
V0 (4.3) 

2m ~ 
Note,  this is a wave  with  phase fronts traveling to  the  right.  In  contrast  to  our  
notation used in chapter 2 for rightward traveling electromagnetic waves, we 
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switched  the sign in the  exponent.  This notation conforms with the  physics  
oriented literature. A superposition of such waves in �k−space enables us to 
construct wave packets in real space Z ³ ´ 

Ψ (�r, t) =  φω 
�k, ω ej(

�k·�r−ωt)d3k dω  (4.4) 

The inverse transform of the above expression is ³ ´ Z 
�φω 

�k, ω =
1 
4 Ψ (�r, t) e−j(

�k·r−ωt)d3r dt,  (4.5) 
(2π)

with Ã ! ³ ´ ~�k2 V0
φω 

�k, ω = φ (k) δ ω −
2m 
− 
~ 

. (4.6) 

Or we can rewrite the wave function in Eq.(4.4) by carrying out the trivial 
frequency integration over ω Ã " Ã ! #!Z 

Ψ (�r, t) =  φ (k) exp  j �k·�r − 
~
2

�k

m 

2 

+ 
V

~ 
0 

t d3k. (4.7) 

Due to the Fourier relationship between the wave function in space and time 
coordinates and the wave function in wave vector and frequency coordinates ³ ´ 

φω 
�k, ω Ψ (�r, t) (4.8) ↔ 

we have 

ω φω (k, ω) j 
∂Ψ (�r, t) 

, (4.9) ↔ 
∂t 

�k φω (k, ω) ↔ − j∇Ψ (�r, t) , (4.10) 

�k2 φω (k, ω) ↔ −∆ Ψ (�r, t) . (4.11) 

where 
∂ ∂ ∂ ∇ = �ex 
∂x 
+ �ey 

∂y 
+ �ez 

∂z 
, (4.12) 

∂2 ∂2 ∂2 

∆ = ∇ · ∇ ≡ ∇2 = 
∂x2 

+ 
∂y2 

+ 
∂z2 

. (4.13) 
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From the dispersion relation follows by multiplication with the wave function 
in  the wave vector and  frequency domain  

~2k2 

~ ω φω (k, ω) =  φω (k, ω) + V0 φω (k, ω) . (4.14) 
2m 

With the inverse transformation the corresponding equation in the space and 
tieme domain is 

j ~ 
∂Ψ (�r, t)

= − 
~2 

∆ Ψ (�r, t) + V0 Ψ (�r, t) . (4.15) 
∂t 2m 

Generalization of the above equation for a constant potential to the instance 
of an arbitrary potential in space leads finally to the Schroedinger equation 

j ~ 
∂Ψ (�r, t)

= − 
~2 

∆ Ψ (�r, t) + V (�r) Ψ (�r, t) . (4.16) 
∂t 2m 

Note, the last few pages ar not a derivation of the Schroedinger Equation 
but rather a motivation for it based on the findings of Einstein and deBroglie. 
The Schroedinger Equation can not be derived from classical mechanics. But 
classical mechanics can be rederived from the Schroedinger Equation in some 
limit. It is the success of this equation in describing the experimentally ob­
served quantum mechanical phenomena correctly, that justifies this equation. 
The wave function Ψ (�r, t) is complex. Note, we will no longer underline 

complex quantities. Which quantities are complex will be determined from 
the context. 
Initially the magnitude square of the wave function |Ψ (�r, t)| 2 was inter­

preted as the particle density. However, Eq.(4.15) in one spatial dimension 
is mathematical equivalent to the dispersive wave motion Eq.(2.72), where 
the space and time variables have been exchanged. The dispersion leads to 
spreading of the wave function. This would mean that any initially compact 
particle, which has a well localized particle density, would decay, which does 
not agree with observations. In the framwork of the "Kopenhagen Interpre­
tation" of Quantum Mechanics, whose meaning we will define later in detail, 
|Ψ (�r, t)| 2 dV is the probability to find a particle in the volume dV at position 
�r , if an optimum measurement of the particle position is carried out at time 
t. The particle is assumed to be point like. Ψ (�r, t) itself is then considered 
to be the probability amplitude to find  the particle at position  �r at time t. 
Note, that the measurement of physical observables like the position of 

a particle plays a central role in quantum theory. In contrast to classical 
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mechanics where the state of a particle is precisely described by its position 
and momentum in quantum theory the full information about a particle is 
represented by its wave function Ψ (�r, t). Ψ (�r, t) enables to compute the 
outcome of a measurement of any possible observable related to the particle, 
like its position or momentum. 
Before, we discuss this issue in more detail lets look at a few examples to 

get familiar with the mathematics of quantum mechanics. 

4.1 Free Motion 

Eq.(4.15) describes the motion of a free particle. For simplicity, we consider 
only a one-dimensional motion along the x-axis. Initially, we might only 
know the position of the particle with finite precision and therefore we use a 
Gaussian wave packet with finite width as the initial wave function µ ¶

2x
Ψ (x, t = 0) = A exp − 

0 
+ jk0x . (4.17) 

4σ2 

The probability density to find  the particle at position  x is a Gaussian dis­
tribution 

2x|Ψ (x, t = 0)| 2 = |A | 2 exp

µ
−
2σ0

2 

¶ 

, (4.18) 

σ20 is the variance of the initial particle position. Since the probability to find 
the particle somewhere must be one, we can determine the amplitude of the 
wave function by requireing 

Z∞ 
1 

Ψ (x, t = 0) 2 dx = 1 A = 
4

(4.19) | | → √
2π
√
σ0 

−∞ 

The meaning of the wave number k0 in the wave function (4.17) becomes 
obvious by expressing the solution to the wave equation by its Fourier trans­
form 

Z+∞ 

Ψ (x, t) =  φ (k) exp  j (kx − ω (k) t) dk (4.20) 

−∞ 
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or specifically for t = 0  Z+∞ 

Ψ (x,0) =  φ (k) e jkx dk , (4.21) 

−∞ 

or Z+∞
1 

φ (k) =  Ψ(x,0) e− jkx dx . (4.22) 
2π 

−∞ 

For the initial Gaussian wavepacket of µ ¶
2x

Ψ (x, 0) = A exp + jk0x (4.23) −
4σ20 

we obtain 
Aσ0 £ ¤

φ (k) =  √
π 
exp −σ20 (k − k0)

2 . (4.24) 

This is a Gaussian distribution for the wave number, and therefore momen­
tum, of the particle with its center at k0. With the dispersion relation 

~ k2 

ω = , (4.25) 
2 m 

with the constant potential V0 set to zero, the wave function at any later 
time is Z+∞ ∙


−σ20 (k − k0) 
2 − j 

~k2 ¸
t + jkx

2m 
dk.
 (4.26)


Aσ0
Ψ (x, t) = 
√

π 
exp 

−∞ 

This is exactly the same Gaussian integral we were studying for dispersive 
pulse propagation or the diffraction of a Gaussian beam in chapter 2 which 
results in ⎤⎡ 

~2σ 2
0 

2
0x2 − 4 jσ2k0 x + j  k

t ³0 ḿ  
A
 ⎦
⎣Ψ (x, t) =  q

~ t 
−

1 +  j  

As expected the wave packet stays Gaussian. The probability density is 

(4.27)
exp .

4σ20 1 +  j  ~ t
2

0 
2
0m2σ m2σ

⎤⎡ ¢2 ∙¡x −


2σ20 1 +  ~ t


2 ~ k0⎢⎢⎣
−

⎥⎥⎦


A| t
|
2 .
 (4.28)
m|Ψ(x, t)|
 q
1 + (  

=
 exp ³ ´ 2¸~ t 
2mσ20 

))

2
02mσ
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With the value for the amplitude A according to Eq.(4.19), the wave packet 
remains normalized Z+∞ 

|Ψ(x, t)| 2 dx = 1. (4.29) 

−∞ 

Using the probability distribution for the particle position, we obtain for its 
expected value Z+∞ 

hxi = x |Ψ(x, t)| 2 dx (4.30) 

−∞ 

or 

hxi = 
~ k0 

m 
t .  (4.31) 

Thus the center of the wave packet moves with the velocity of the classical 
particle 

~ k0
υ0 = , (4.32) 

m 
which is the group velocity derived from the dispersion relation (4.2) 

∂ω(k)
̄̄̄¯
 =

1 ∂E(k)
̄̄̄¯
υ0 = .
 (4.33)


∂k ~ ∂kk=k0 k=k0 

As we will see later, the expected value for the center of mass of the par­
ticle follows Newton’s law, which is called Ehrenfest’s Theorem. For the 
uncertainty in the particle position q

s 

hx2

follows for the freely moving particle 

i − hxi 2 (4.34) ∆x =


∆x = σ0 1 +

µ
 ¶2 ~ t 
. (4.35) 

2mσ20 

The probability density for the particle position disperses over time. Asymp­
totically one finds 

∆x . = 
~ t 
2mσ2 

0 
for 

~ t 
2mσ2 

0 
À 1 . (4.36) 

Figure 4.1 (a) is a sketch of the complex wave packet and (b) indicates the 
temporal evolution of the average and variance of the particle center of mass 
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motion described by the complex wave packet. The wave packet disperses 
faster, if it is initially stronger localised. 

Figure 4.1: Gaussian wave packet: (a) Real and Imaginary part of the com­
plex wave packet. (b) width and center of mass of the wave packet. 

Example: 
Using this one dimensional model, we can estimate how rapidly an elec­

tron  moves  in a hydrogen  atom.  If  we localize an electron in a box with a size  
similar to that of a hydrogen atom, i.e. σ0 = a0 = 0.5 10−10m, without the · 
presence of the proton that holds the electron back from escaping, it will only 
take t = 2mσ20/~ = 2  9.81 10−31kg (0.5 10−10)2 m2/6.626 10−34Js = 46.5as· · · · · 
(attoseconds=10−18 sec) until its wave function disperses significantly. This 
result indicates that electronic motion in atoms occurs on a attosecond time 
scale. Note, these time scales quickly become very long if macroscopic ob­
jects are described quantum mechanically. For example, for a particle with 
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a mass  of  1μg localized in a box with dimensions 1μm, the equivalent time 
for significant dispersion of the wave function is t = 2 1019s =  2Million · 
years. This result gives us a first indication why we are far, far away from 
encountering quantum mechanical effects in our everyday life and why the 
mechanics of the micro cosmos, on an atomic or molecular level, is so dif­
ferent from our macroscopic experience. The reason is the smallness of the 
quantum of action h. 
The reason for this behaviour is that a well localized particle has a wider 

momentum or wave number distribution. This is in one to one analogy that 
an otpical pulse disperses faster in a medium with a given dispersion if it is 
shorter because of larger spectral width. The wave number spread is Z∞ 

(k − k0)
2 |φ (k)| 2 dk 

(∆k)2 =
−∞ Z∞ . (4.37) 

|φ (k)| 2 dk 

−∞ 

Here, we have 

∆k = 
1 
2σ0 

, (4.38) 

or for the momentum spread 

~ 
∆p = 

2σ0 
. (4.39) 

The position-momentum uncertainty product is then 

∆p ∆x = 
~ 
2 

s 

1 +

µ 
~ t 
2m2 

0 

¶2 

. (4.40) 

The position-momentum uncertainty product is a minimum at t = 0  and 
steadily increases from this initial value. As we will show later it is in gen­
erally true that the position-momentum uncertainty product satisfies the 
condition 

~ 
∆xi ∆pi > . (4.41) 

2 
Note, that the index i indicates the coordinate. This is Heisenberg’s uncer­
tainy relation between particle position and moment, which holds for each 
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component individually. Later, we will find other pairs of physical obser­
vavles, which are called conjugate observables and which satiesfy similar 
uncertainty relations. The product of such quantities is always an action. 
This is for example also true for the product of energy and frequency and 
the resulting energy-time uncertainty relation is 

~ 
∆E ∆t > .	 (4.42) 

2 

Note, whereas the position-momentum uncertainy is related to the choice of 
the particle state described by the wave function, the energy-time uncertainty 
relation is related to the dynamics of a quantum process. What it means is 
that a quantum system can only change its state significantly within a time 
span ∆t, if the state, the quantum system is in, has an energy uncertainty 
larger than δE > 

2
~ 
δt
. 

Position and momentum variables that do not belong to the same degree 
of freedom, such as y, and px are not subject to an uncertainty relation. 

4.2	 Probability Conservation and Propabil-
ity Currents 

Max Born was the first to introduce the propabilistic interpretation of the 
wave function found by Schroedinger, that is the propability to find the center 
of mass of a particle at position �r in a volume element dV is given by the 
magnitude square of the wave function multiplied by dV 

p (�r, t) = |Ψ (�r, t)| 2 d V . 	 (4.43) 

If this interpretation makes sense, then the total propability that the parti­
cle can be found somewhere should by 1 and this normalization should not 
change during the dynamics. We found that this is true for the Gaussian 
wave packet undergoing free motion. Here, we want to show that this is true 
under the most general circumstances. We look at the rate of change of the 
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probability to find the particle in an arbitrary but fixed volume V = V ol  Z 
d 

p (�r, t) d3 r = (4.44) 
dt ZV ol  

= 
∂ 

Ψ (�r, t) 2 d3 r

V ol  dt 

| |
Z ∙µ ¶ µ ¶ ¸
∂ ∂ 

= Ψ∗ (�r, t) Ψ (�r, t) +Ψ∗ (�r, t) Ψ (�r, t) d3 r 
∂t ∂tV ol  

Using the Schroedinger Equation (4.16) for the temporal change of the wave 
function we obtain Z 

d 
p (�r, t) d3 r =


dt V ol 


= 
Z ∙µ 

~ 
m
∇ · ∇ Ψ∗ (�r, t)− j

V (�r) ∗ Ψ∗ (�r, t)

¶ 

Ψ (�r, t)

¸ 

d3 r (4.45) 
j2 ~ V ol  

+ 
Z ∙ 

Ψ∗ (�r, t)

µ
~ 
m
∇ · ∇ Ψ (�r, t) +  

j
V (�r) Ψ (�r, t)

¶¸ 

d3 r 
V ol  

−
j2 ~ 

Since the potential V (�r) is real the terms related to it cancel. The other two 
terms can be written of the divergence of a current density Z Z 

∂ �
V ol  ∂t

p (�r, t) d3 r = − 
V ol

∇ · J (�r, t) d3 r, (4.46) 

with 

~ 
J� (�r, t) =  

j2m 
(Ψ∗ (�r, t) (∇Ψ (�r, t))−Ψ (�r, t) (∇Ψ∗ (�r, t))) . (4.47) 

Eq.(4.46) is true for any volume, i.e. Z ∙ ¸
∂ �p (�r, t) +∇ · J (�r, t) d3 r = 0, (4.48) 
∂tV ol  

which is only possible if the integrand vanishes 

∂ 
p (�r, t) = − ∇ · J� (�r, t) . (4.49) 

∂t

Clearly, J� (�r, t) has the physical meaning of a probability current. The prob­
ability in a volume element changes because of probablity flowing out of 
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this volume element. Note, this is the same local law that we have for the 
conservation of charge. In fact, if the particle is a charged particle, like an 
electron is, multiplication of J� with −e0 would result in the electrical current 
associated with the wave function Ψ (�r, t) . 
Gauss’s theorem states Z Z 

� �∇ · J (�r, t) d3 r = J (�r, t) dS,� (4.50) 
V ol S 

where V ol  is  the volume over which  the integration  is  carried  out and  S is 
the surface that encloses the volume with dS� an outward pointing surface 
normal vector. With Gauss’s theorem the local conservation of probability 
can be transfered to a global result, since Z Z Z 

d 
dt V ol  

p (�r, t) d3 r = − 
V ol

∇ · �J (�r, t) d3 r = − 
S 

�J (�r, t) d�S. (4.51) 

If  we  choose  as  the volume the  whole space  and if  Ψ (�r, t) and ∂ Ψ (�r, t)
∂t

vanish rapidly enough for �r →∞ such that the probability current vanishes 
at infinity, the total probability is conserved. These findings proove that 
the probabilty interpretation of the wave function is a valid interpretation 
not contradicting basic laws of probability. If the wave function properly 
normalized at the beginning it will stay normalized. 

Example The Gaussian wave packet satisfies the condition that the prob­
ability current decays rapidly enough at the surface of a large enough chosen 
volume so that the normalization is preserved. A monochromatic plane wave 
does not satisfy this condition. However, the probability current density gives 
a physical meaning to it. The wave function corresponding to a plan wave 

Ψ (�r, t) = ej(
�k·�r−ωt), with ω = 

~�k2 

+ 
V0 (4.52) 

2m ~ 

which is not normalizable, results in a homogenous probability current 

~ 
J� (�r, t) =  

j2m 
(Ψ∗ (�r, t) (∇Ψ (�r, t))−Ψ (�r, t) (∇Ψ∗ (�r, t))) (4.53) 

~�k 2 �p 
= 

m 
|Ψ (�r, t)| = 

m 
= �v, 
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that is identical to the classical velocity of the particle. Thus a plane wave 
describes a particle with a precise velocity or momentum but completely 
unknown position, therefore the related probability current density is com­
pletely homogenous but directed into the direction of �v. Such waves describe 
the initial state in a scattering experiment, where we shoot particles with a 

m�v2 ~p�2 ~�k2precisely defined velocity �v or momentum p� or energy E = 
2 = 

2m = 
2m 

onto another object described by a scattering potential, see problem set. The 
position of these particles is completely unspecified, i.e. |Ψ (�r, t)| 2 =const. 

4.3	 Measureability of Physical Quantities (Ob-
servables) 

The reason for the more intricate description necessary for microscopic pro­
cesses in comparison with macroscopic processes is simply the fact that these 
systems are so small that the interaction of the system with an eventual mea­
surement apparatus can no longer be neglected. It turns out this fact is not 
to overcome by choosing more and more sophisticated measurement apparati 
but rather is a principle limitation. If this is so, then it eventually doesn’t 
make sense or it becomes even inconsistent to attribute to a system more 
precisely defined physical quantities than actually can be retrieved by mea­
surements. This is the physical reason behind the introduction of the wave 
function in stead of the precisely defined position and momentum of the par­
ticle that we used to deterministically predict the trajectory of a particle in 
an external field. 
It is impossible to assign to a microscopic particle a precise position and 

momentum at the same time. To demonstrate this, we consider the following 
(Heisenberg) microscope to measure the exact position of a particle. We use 
light with wavelength λ and focus it strongly with a lense of some focal 
distance d, see Figure 4.2. 
From our construction of the Gaussian beam in section 2.4.2, we found 

that if we generate a focused beam with a waist wo having a Rayleigh range 
ozR = πw

λ 

2 

, the beam is composed of plane waves which have a Gaussian distri­
bution in its transverse k-vector, which has a variance kT 

2 /2, see Eq.(2.220). 
The Rayleigh range of the beam is related to the transverse wave number 
spread of the beam by zR = k0/kT 

2 , with  k0 = 2π/λ, see (2.221) and there­
after. Note, the intensity profile of the beam has a variance wo 

2 /4. If a particle 
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crosses the focus of the beam and scatters a single photon, which we detect 
with the surrounding photo detector arrangement, then it is reasonable to 
assume that we know the position of the particle in the x-direction, with an 
uncertainty equal to the uncertainty in the transverse photon or intensity 
distribution of the beam, i.e. ∆x = wo /2. 

Photodector 

Weak particle beam 
with precise momentum p 

p 

Figure 4.2: Determination of particle position with an optical microscope. 
A weak particle beam with precisely defined moment p� of the particles is 
directed towards the focus of the Gaussian beam. In the focus the particle 
scatters at least one photon. Detection of the scattered photon with the 
surrounding photodetector signals, that the position of the particle in x-
direction has been determined within the beam waist of the Gaussian beam. 
However, due to the scattering of the photon a momentum uncertainty has 
been introduced to the particle state. 

During the measurement, the photon recoil induces a momentum kick 
with an uncertainty ∆px = ~kT /

√
2. So even if the momentum of the particle 

was perfectly know before the measurement, after the additional determina­
tion of its position with a precision ∆x it has at least aquired an uncertainty 
in its momentum of magnitude ∆px. The product of the uncertainties in 
postion and momentum after the measurement is ³ ´ 

∆px · ∆x = ~kT wo/ 2
√
2 = 

~ 
2 
. (4.54) 
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Note, this result is exact and is independent of focusing. Tighter focusing 
will enable us to more precisely determine the position of the particle, but 
we will introduce more momentum uncertainty due to the photon recoil; the 
opposite is true for less focusing. Since we can not determine, and therefore, 
prepare a particle in a state with its position and momentum more precisely 
determined than this uncertainty product allows, there is nowsuch state and 
(4.54) is the minimum uncertainty product achievable. 
The experimental setup can easily be extended to measure the momentum 

and position of a particle in all three dimensions. For example one can use 
three focused laser beams at different wavelength, which are orthogonal to 
each other. Once a particle will fly through the focus and scatters three 
photons, each of different color. If we knew its momentum initially precisely, 
we would know afterwards its 3-dimensional position with a position and 
momentum spread as described by Eq.(4.54). 

4.4 Stationary States 

One of the great mysteries before the advent of quantum mechanics was the 
orgin of the discrete energy spectra observed in spectroscopic investigations 
and empirically described by the Bohr-Sommerfeld model of the atom. This 
mystery is easily explained by the Schroedinger Equation (4.16) 

j~ 
∂Ψ (�r, t)

= − 
~2 

∆ Ψ (�r, t) + V (�r) Ψ (�r, t) . (4.55) 
∂t 2m 

It allows for solutions 
Ψ (�r, t) = ψ (�r) ej ωt , (4.56) 

which have a time independent probability density, i.e. 

|Ψ (�r, t)| 2 = |ψ (�r)| 2 = const., (4.57) 

which is the reason for calling these states stationary states. Since the right 
side of the Schroedinger Equation is equal to the total energy of the sys­
tem, these states correspond to energy eigenstates of the system with energy 
eigenvalues 

E = ~ω. (4.58) 
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These energy eigenstates ψ (�r) are eigen solutions to the stationary or time 
independent Schroedinger Equation 

~2 

−
2m 

∆ ψ (�r) + V (�r) ψ (�r) = E ψ (�r) . (4.59) 

We get familiar with this equation by considering a few one-dimensional 
examples, before we apply it to the Hydrogen atom. 

4.4.1 The One-dimensional Infinite Box Potential 

A simple example for a quantum mechanical system is an electron that can 
freely move in one dimension x but only over a finite distance a. Such a 
situation closely describes an electron that is strongly bound to a molecule 
with a cigar like shape with length a. The potential describing this situation 
is the one-dimensional box potential ½ 

0, for x < a/2 
V (x) =  ∞, for  

|
x
| 
≥ a/2 

, (4.60) | | 

see Figure 4.3. 

Image removed for copyright purposes. 

Figure 4.3: One dimensional box potential with infinite barriers. 

In the interval [−a/2, a/2] the stationary Schroedinger equation is 

~2 d2ψ (x) − 
2m dx2 

= E ψ (x) . (4.61) 
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For |x| ≥ a/2 the wave function must vanish, otherwise the energy eigenvalue 
can not be finite, i.e. ψ (x = ±a/2) = 0. This is analogous to the electric 
field solutions for the TE-modes for a planar mirror waveguide and we find r 

ψn (x) =  
2 
cos 

nπx 
for n = 1, 3, 5 . . . ,  (4.62) 

a a r 

ψn (x) =  
2 
sin 

nπx 
for n = 2, 4, 6 . . . .  (4.63) 

a a 

The corresponding energy eigenvalues are 

n2π2~2 

En = . (4.64) 
2ma2 

We also find that the stationary states constitute an orthogonal system of 
functions Z+∞ 

ψm (x)
∗ ψn (x) dx = δmn. (4.65) 

−∞ 

In fact this system is complete. Any function in the interval [−a/2, a/2] 
can be expanded in a superposition of the basis functions ψn (x), which  is  a  
Fourier series X∞

f (x) =  cnψn (x) (4.66) 
n=0 

with Z a/2 

cm = ψm (x)
∗ f (x) dx, (4.67) 

−a/2 

which is a consequence of the orthogonality relation (4.65). 

Example: If we approximate the binding potential of a hydrogen atom 
by a one-dimensional box potential with a width equal to twice the Bohr 
radius a = 2a0 = 10

−10m, the energy eigenvalues are En = n2 35eV. Clearly, · 
the spacing of the energy eigenvalues does not conform with what has been 
observed experimentaly, compare with section 3.4, however the energy scale 
is within an order of magnitude. The ionization potential of the hydrogen 
atom is 13.5eV . 
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4.4.2 The One-dimensional Harmonic Oscillator 

The most important example of a quantum system is the one-dimensional 
harmonic oscillator. It is the most basic mechanical and electrical system 
and it describes the dynamics of a mode of the radiation field,  see Figure 4.4.  

Image removed for copyright purposes. 

Figure 4.4: Elastically bound particle 

Mechanically, a harmonic oscillation comes about by the elastic force 
obeying Hook’s law 

F (x) = −Kx, (4.68) 

that pulls back a particle with mass m in its equilibrium position. This force 
is conservative and can be derived from a potential by 

d V (x)
F (x) = − 

dx 
, (4.69) 

with 
V (x) =  

1 
2 
Kx2 . (4.70) 

Newton’s law results in the classical equation of motion 

mẍ = F (x) , (4.71) 

or 
ẍ+ ω0

2 x = 0, (4.72) 

with the oscillation frequency r 
K 

ω0 = (4.73) 
m 
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The corresponding stationary Schroedinger Equation is 

d2ψ (x) 2m 
µ

1 
¶

dx2 
+ 
~2 

E − 
2 
Kx2 ψ (x) = 0. (4.74) 

This equation is well known in mathematical physics and we want to bring 
it into standardized form by the scale transformation, i.e. introducing a 
normalized distance 

ξ = ax, (4.75) 

with the scale factor ¶
1 
4 

=


r rµ
mK ω0m K 

= . (4.76) a =

~2 ~ ~ω0 

In addition we introduce the energy scale factor 

2E 
γ = . (4.77) 

~ω0 

Then the stationary Schroedinger Equation for the harmonic oscillator is 

d2ψ (ξ) ¡ ¢ 
dξ2 + γ − ξ2 ψ (ξ) = 0. (4.78) 

It turns out [4][6], that this equation has only solutions that are bounded, 
i.e. ψ (ξ → ±∞) = 0, if the normalized energies are 

γn = 2n + 1. (4.79) 

And the corresponding eigensolutions are the Hermite Gaussians, 

ψn (ξ) = const. Hn (ξ) e−
1 
2
ξ2 
,
 (4.80)


which we discovered already as solutions of the paraxial wave equation, see 
Eqs.(2.298) and (2.299), i.e. 

Hn (ξ) = (−1)n e ξ
2 dn 

dξn e
−ξ2 

(4.81) 

H0 (ξ) = 1  , H3 (ξ) = 8 ξ
3 − 12 ξ , 


H1 (ξ) = 2 ξ ,  H4 (ξ) = 16 ξ
4 − 48 ξ2 + 12  , (4.82)


H2 (ξ) = 4 ξ
2 − 2 , H5 (ξ) = 32 ξ

5 − 160 ξ3 + 120 ξ . 
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After denormalization and normalization the stationary wave functions are r 
a 1 2 2 

ψn (x) =  
2n
√
π n! 

Hn (ax) e− a x . (4.83) 2 

Again, we find that the Hermite Gaussians constitute an orthogonal system 
of functions such that Z+∞ 

ψm (x)
∗ ψn (x) dx = δmn. (4.84) 

−∞ 

Figure 4.5 shows the first six stationary states or energy eigenstates of the 
harmonic oscillator. 

Image removed for copyright purposes. 

Figure 4.5: First six stationary states of the harmonic oscillators. 

The energy eigenvalues of the stationary states are µ ¶
1 

En = n + ~ω0 . (4.85) 
2

Note, that the energy eigenvalues are equidistant and the difference between 
two energy eigenstates follows the findings of Planck. An oscillator has dis­
crete energy levels which differ by energy quanta of size ~ω0, see  Figure  
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Image removed for copyright purposes. 

Figure 4.6: Lowest order wavefunctions of the harmonic oscillator and the 
corresponding energy eigenvalues [3]. 

.The only difference is, that the whole energy scale is shifted by the energy 
of half a quantum, which is the lowest energy eigenvalue. Thus the minimum 
energy, or ground state energy, of a harmonic oscillator is not zero but E0 = 
1 ~ω0.It is obvious, that an oscillator can not have zero energy because its 
2 
energy is made up of kinetic and potential energy 

E = 
p2 

+
1 
Kx2 . (4.86) 

2m 2 

Since every state has to fulfill Heisenberg’s uncertainty relation ∆p ∆p ≥ ~ 
2 ,· 

one can show that the state with minimum energy possible has an energy 
E0 = 

2
1 ~ω0, which is true for the ground state ψ0 (x) according to Eq.(4.83).  

The stationary states of the harmonic oscillator correspond to states with 
precisely definied energy but completely undefined phase. If we assume a 
classical harmonic oscillator with a well defined energy E = 

2
1 Kx0

2 . Note, 
that during a harmonic oscillation the energy is periodically converted from 
potential energy to kinetic energy. Then the oscillator oscillates with a fixed 
ampltiude x0 

x(t) =  x0 cos (ω0t + ϕ) . (4.87) 

If the phase is assumed to be random in the interval [-π, π], one finds for the 
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probability density of the position x to be 

1 
p (x) =  p . 

π x20 − x2 

Figure 4.7 shows this probability density corresponding to an energy eigen­
state ψn (x) with quantum large quantum number n = 10. 

Image removed for copyright purposes. 

Figure 4.7: Probability density |ψ10| 2 of the harmonic oscillator containing 
exactly 10 energy quanta. 

On average, the quantum mechanical probability density agrees with 
the classical probability density, which is some form of the correspondence 
principle, which says that for large quantum numbers n the wave functions 
resume classical properties. 

4.5 The Hydrogen Atom 

The simplest of all atoms is the Hydrogen atom, which is made up of a 
positively charged proton with rest mass mp = 1.6726231 × 10−27 kg, and 
a negatively charged electron with rest mass me = 9.1093897 × 10−31 kg. 
Therefore, the hydrogen atom is the only atom which consists of only two 
particles. This makes an analytical solution of both the classical as well as 
the quantum mechanical dynamics of the hydrogen atom possible. All other 
atomes are composed of a nucleus and more than one electron. According 
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Figure 4.8: Bohr Sommerfeld model of the Hydrogen atom. 

to the Bohr-Somerfeld model of hydrogen, the electron circles the proton on 
a planetary like orbit, see Figure 4.8.The stationary Schroedinger Equation 
for the Hydrogen atom is 

2m0
∆ψ (�r) +  (E − V (�r)) ψ (�r) = 0  (4.88) 

~2 

The potential is a Coulomb potential between the proton and the electron 
such that 

2 

V (�r) =  −
4 π ε

e0

0 �r
(4.89) | |

and the mass is actually the reduced mass 

m0 = 
mp · me 

(4.90) 
mp + me 

that arises when we transform the two body problem between electron and 
proton into a problem for the center of mass and relative coordinate motion. 
Due to the large, but finite, mass of the proton, i.e. the proton mass is 1836 
times the electron mass, both bodies circle around a common center of mass. 
The center of mass is very close to the position of the proton and the reduced 
mass is almost identical to the proton mass. Due to the spherical symmetry 
of the potential the use of spherical coordinates is advantageous ∙ µ ¶ ¸

∂2ψ 2 ∂ψ 1 1 ∂ ∂ψ 1 ∂2ψ 
∆ψ = + + sin ϑ + (4.91) 

∂r2 r ∂r r2 sin ϑ ∂ϑ ∂ϑ sin2 ϑ ∂ ϕ2 

We will derive separate equations for the radial and angular coordinates by 
assuming trial solutions which are products of functions only depending on 
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one of the coordinates r , ϑ ,  or ϕ 

ψ (r, ϑ, ϕ) = R (r) θ (ϑ) φ (ϕ) . (4.92) 

Substituting this trial solution into the stationary Schroedinger Eq.(4.91) 
and separating variables leads to radial equation 

d2R 
dr2 

+ 
2 
r 
dR 
dr 
+

µ
2m0E 
~2 

+ 
m0e

2 
0 

2πε0 ~2r 
− 

α 
r2 

¶ 

R = 0  , (4.93) 

the azimuthal equation 

1 
sinϑ 

d 
dϑ 

µ
sinϑ 

dθ 
dϑ

¶ 

+

µ
α − 

m2 

sin2 ϑ

¶ 

θ = 0  , (4.94) 

and the polar equation 
d2φ 
dϕ2 

+m 2φ = 0  , (4.95) 

where α and m are constants yet to be determined. The polar equation has 
the complex solutions 

φ (ϕ) = const. ejmϕ , with m = . . .  − 2, −1, 0, 1, 2 . . .  (4.96) 

because of the symmetry of the problem in the polar angle ϕ, i.e. the wave-
function must be periodic in ϕ with period 2π. 

4.5.1 Spherical Harmonics 

The azimuthal equation is transformed by the substitution 

ξ = cosϑ (4.97) 

into 
2¡ ¢ d2θ dθ 

µ
m

¶
1− ξ2

dξ2 − 2ξ 
dξ 
+ α − 

1− ξ2 θ = 0  . (4.98) 

It turns out, that this equation has only bounded solutions on the interval 
ξ�[−1, 1], if the constant α is a whole number 

α = l (l + 1)  with, l  = 0, 1, 2 . . .  (4.99) 
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and 
m = −l,−l + 1, . . .  − 1, 0, 1 . . . l − 1, l  (4.100) 

For m = 0, Eq.(4.98) is Legendre’s Differential Equation and the solutions 
are the Legendre-Polynomialsm [5] 

P0 (ξ) = 1 , P3 (ξ) =
5
2 ξ
3 

2
3 ξ ,  

P4 (ξ) =
35 ξ4
− 

15 ξ2 3P1 (ξ) = ξ ,  
8 4 +

8 , (4.101) 
1 35

− 
15P2 (ξ) =

3 ξ2 − , P5 (ξ) =
63 ξ5 − ξ3 + ξ .

2 2 8 4 8 

For m = 0, Eq.(4.98) is the associated Legendre’s Differential Equation and 6
the solutions are the associated Legendre-Polynomials, which can be gener­
ated from the Legendre-Polynomials by 

P1 
m (ξ) =

¡
1− ξ2

¢m/2 dmP1 (ξ) 
. (4.102) 

dξm 

Overall the angular functions can be combined to form the spherical harmon­
ics s 

PmY m (ϑ, ϕ) = (−1)m (2l + 1)  (l − |m|)! 
(cosϑ) e 

jm ϕ  
, (4.103) 1 14π (l + |m|)! 

which play an important role whenever a partial differential equation that 
contains the Laplace operator is solved in spherical coordinates. The spheri­
cal harmonics form a system of orthogonal functions on the full volume angle 
4π, i.e. ϑ�[0, π] and ϕ�[−π, π] 

Zπ Z2π 

Yl
m∗(ϑ, ϕ)Yl

m
0
0 
(ϑ, ϕ) sinϑ dϑ dϕ  = δll0 , δmm0 . (4.104) 

0 0 

Therefore, a function of the angular variable (ϑ, ϕ) can be expanded in spher­
ical harmonics. The spherical harmonics with negative azimuthal number -m 
can be expressed in terms of those with positive azimuthal number m. 

Y1
−m (ϑ, ϕ) = (−1)m (Yl

m(ϑ, ϕ))∗ . (4.105) 

The lowest order spherical harmonics are listed in Table 4.1. Figure 4.9 shows 
a cut through the spherical harmonics Y1 

m (ϑ, ϕ) along the meridional plane. 
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Y0 (ϑ, ϕ) = 1 , Y 0 (ϑ, ϕ) =  
q 

3 cos ϑ ,  Y  1 (ϑ, ϕ) =  −
q 

3 sin ϑ ejϕ ,0 
√
4π 1 4π 1 8π 

Y0 (ϑ, ϕ) =
q 

5 (3 cos2 ϑ − 1) , Y1 (ϑ, ϕ) =-
q 

15 sin ϑ cos ϕ ejϕ, Y  
2 
(ϑ, ϕ) =

q 
15 sin2 ϑ e2jϕ ,2 16π 2 8π 2 32π 

Y03 (ϑ, ϕ) =
q 

7 (5 cos3 ϑ − 3 cos  ϑ) , Y13 (ϑ, ϕ) =-
q 

21 sin ϑ (5 cos2 ϑ − 1) ejϕ ,
16π 64π q q

Y2 (ϑ, ϕ) = 105 sin2 ϑ cos ϑ ej2ϕ , Y3 (ϑ, ϕ) =- 35 sin3 ϑ ej3ϕ .3 32π 3 64π 

Table 4.1: Lowest order spherical harmonics 

Figure 4.9: Lowest order spherical harmonics Y1 
m (ϑ, ϕ) , along the meridional 

plane, i.e. ϕ = 0. 
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4.5.2 Radial Wave Functions 

Obviously, the spherical harmonics are related to the angular momentum L 
of the particle, because after choosing the spherical harmonic with indices 
l, m the radial Equation (4.93) is ¶


R = 0. (4.106)

µ


d2R 22 dR
 2m0E l (l + 1) 
m0e

~2 2πε0 ~2r 
− 

r2
0+ +
 +


dr2 r d r 


The radial equation has in addition to the 1/r Coulomb potential the cen­
trifugal potential 

~2 l (l + 1)  L� 2 

Erot = = , (4.107) 
2m0 r2 2m0r2 ¯̄̄



¯̄̄



p¯̄̄¯̄̄
which is the rotation energy of a particle with angular momentum 

l (l + 1)
particle can no longer access arbitrary values for the angular momentum.

The angular momentum can only have values l (l + 1) 


0, 1, 2, .... For large radii, the radial equation simplifies to


p L�
 =


and moment of inertia m0r
2 . Thus quantum mechanically, the ~


with lL�
 ~
=
 =


d2R 2m0E 
+ R = 0, (4.108) 

dr2 ~2 

which indicates that the radial wave function must decay exponentially for 
large radii. Therefore, we rescale the radius accoring to 

ρ = Ar (4.109) 

with 

A2 = − 
8m0E

, because E <  0, (4.110) 
~2 

and form the trial solution 

R (ρ) = ρs w (ρ) e−ρ/2 . (4.111) 

Substitution into Eq.(4.109) leads to the following differential equation for 
w (ρ) 

d2w dw 
ρ2 + ρ [2 (s + 1)− ρ] + [ρ (λ − s − 1) + s (s + 1)− l (l + 1)]  w = 0,

dρ2 dρ 
(4.112) 
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with 
2 2 m0e

√
m0e

λ = = . (4.113) 
2πε0 ~2A 4

√
2πε0 ~

√
−E 

Evaluation of this differential equation at ρ = 0 leads to 

l = s, 

and we are left with the much simpler equation 

d2w dw 
ρ + [2 (l + 1)− ρ] + (λ − l − 1) w = 0 . (4.114) 
dρ2 dρ 

One way to solve this equation is by using a polynomial trial solution. 

w (ρ) = b0 + b1ρ + b2ρ
2 + . . . bpρ

p (4.115) 

Substitution into Eq.(4.114) leads to the following recursion relation for the 
coefficients 

bk+1 = 
k + l + 1− λ

bk (4.116) 
(k + 1)  (k + 2l + 2)  

For 
λ = p + l + 1  (4.117) 

the recursion breaks off and we obtain a polynomial of finite order. If λ is 
not an integer the polynomial does not stop and the corresponding series 
converges against a w (ρ) that has an asymptotic behavior w (ρ) ˜eρ, which  
leads to a radial function not normalizable. Thus we have the condition 

λ ≡ n, with n > l + 1  (4.118) 

and in total 
w (ρ) = L21+1 (ρ) (4.119) n−l+1 

with the Laguerre Polynomials 

sX (s + r)!2 xq 

Lr (x) =  (−1)q 

(s−q) !  (r + q)! q! 
. (4.120) s 

q=0 

The lowest order Laguerre Polynomials are summarized in Table 4.2 The 
radial wave function is then a Laguerre function 

Fn1(ρ) =  ρ1 L21+1 (ρ) e−ρ/2 , (4.121) n−l=1 
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x2 

32

1, L1

3, L1

1
0

1
3

2
1

3
3

4
0

(x) = 4− 2x ,  L 
1
2

2L (x) = 1 
 (x) = 18− 18x+ 3x
 ,


2
0 (x) = 2 
L (x) = 96− 144x+ 48x
 x− 4 , L 
 ,


L (x) = 18− 6x ,  L 
2
2 (x) = 144− 96 + 12
 ,


L (x) = 6 
 (x) = 96− 24x , 


L (x) = 24  . 

Table 4.2: Lowest order Laguerre Polynomials 

and they again form an orthogonal system of functions Z∞ 

0 

Fnl (ρ)Fn0l (ρ) ρ
2dρ =


32n [(n+ l)!]

(n− l − 1)! 
δ
nn0 . (4.122)


We now reverse the normalization of the radial coordinate and from Eqs.(4.109,4.110) 
and (4.113) we find 

2r 
ρ = (4.123) 

0 

na

with the Bohr radius 

a

0 

4πε0 ~2 

(4.124)
=
 ,

0 

2
0e m

which we found already in the Bohr-Sommerfeld model, see section 3.4. The 
radial wave function is then 

Rn1 (r) = Nnl Fnl (ρ) . (4.125) 

And the normalization factor is determined by Z∞ 

Rnl (r) Rn0l (r) r 2 dr

0 

= δn,n0 , (4.126) 

a
−3/2 
0

which gives 
2 
s 
(n− l − 1)! 

3Nnl = . (4.127) 
2n [(n+ l)!]
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The radial wave functions of the hydrogen atom are listed in Table 4.3 and 
plots of the lowest order radial wave functions are presented in Figure 4.10 

³ ´ 
2√
a

R10(r) = 3 
0 

e−r/a0 R, 1 

2
√
2
√

a
20(r) =. 3 

0 

2− r 
a0 

e−r/2a0 

2
√
6

1√
a

r −r/2a0eR21(r) = 3
0 
a0 ³ ´


2 

81
√
3

1√
a30 

e−r/3a027− 18 r + 2 r
a0 a

R30(r) =  

R31(r) = 3
0 

³ ´ 

81
√
6

4√
a

r r 
32(

81
√
30

4√
a

2
0 

3
0 

2−r/3a0 , R e−r/3a0 
2
0 

r
a

6−
 ) = 
e
 r

a0 a0 

Table 4.3: Lowest order radial wavefunctions Rn,l(r). 

Figure 4.10: Radial wavefunctions Rnl(r) of the hydrogen atom. 
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4.5.3 Stationary States of Hydrogen 

In total we found the stationary states, or the energy eigenfunctions, of the 
hydrogen atom. Those are 

ψnlm (r, ϑ, ϕ) =  Rnl (r) Yl
m (ϑ, ϕ) . (4.128) 

The lower  order wave functions  are listed in  Table  4.4 and  plots of the  re­
sulting probability densities of the lowest order energy eigenstates of the 
hydrogen atom are shown in Figure 4.11 

1 √
π
√

a30 

e−r/a0ψ100(r, ϑ, ϕ) =  

³ ´ 

4
√
2π

1√
a

2 − r e−r/2a0ψ200(r, ϑ, ϕ) = 3
0 

a0 

ψ210(r, ϑ, ϕ) =  
4
√
2π

1√
a

e−r/2a0 cos ϑr 
a03

0 

e−r/2a0 sin ϑe±jϕ 
3
08

√
π

1√
a

rψ21±1(r, ϑ, ϕ) =  ,

a0 ³ ´


2 

81
√
3

1 

π
√

a30 

e−r/3a027 − 18 r + 2 r
a0 

ψ300(r, ϑ, ϕ) = 2
0a

Table 4.4: Lowest order hydrogen wavefunctions ψn,l,m(r, ϑ, ϕ). 

4.5.4 Energy Spectrum of Hydrogen 

We haven’t yet discussed the energy eigenspectrum of hydrogen. From 
Eqs.(4.113) and (4.118) we find this to be 

m0e
4 1 

E = − , (4.129) 
8 ε20h2 n2 

which also agrees with the energy spectrum of the Bohr-Sommerfeld model, 
see section 3.4. The lowest energy eigenstate is 

4 

E1 = −
8 
m

ε
0

2
0

e

h2 
= −13.7eV. (4.130) 
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Image removed for copyright purposes. 

Figure 4.11: Probability densities of the lowest order hydrogen wavefunctions. 
(The density is presented along the meridial plane). 
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³ ´ 

81
√
π

1√
a

r 
3
0 

e−r/3a0 cos ϑψ310(r, ϑ, ϕ) =  6 −

a0 ³ ´


e−r/3a0 sin ϑe±jϕ 
81
√
π

1√
a

6 − r r 
3
0 

ψ31±1(r, ϑ, ϕ) =  
a0 a0 

2 

81
√
6

1 

π
√

a30 

e−r/3a0 (3 cos2 ϑ − 1)rψ320(r, ϑ, ϕ) = 2
0a

2
0

2 
e−r/3a0 sin ϑ cos ϑe±jϕ 

a81
√
π

1√
a

r
3
0 

ψ32±1(r, ϑ, ϕ) =  ,


2 
e−r/3a0 sin2 e±2jϕ 

162
√
3

1 

π
√ rψ32±2(r, ϑ, ϕ) = 2

03
0 
aa

Table 4.5: Lowest order hydrogen wavefunctions ψn,l,m(r, ϑ, ϕ).continued. 

The energy eigenvalues constitute a sequence that converges for large 
towards 0, which corresponds to removing the electron from the atom. 

n →∞
The 

energy to do so is E∞1 −E1 = 13.7eV. 

Figure 4.12 shows the energy levels and the term diagram of the hydrogen 
atom and how the Lyman, Balmer, Paschen, Brackett and Pfund series arise 
from it. Each wavefunction is uniquely described by the set of quantum 
numbers (n,l,m). The first quantum number n specifies the energy eigen 
value En. As we will show in problem sets, the second quantum number 
l determines the eigenvalue of the squared angular momentum operator L� 2 

with eigenvalues 

�L2 ψnlm (r, ϑ, ϕ) =  l(l + 1)~2 ψnlm (r, ϑ, ϕ) , (4.131) 

and the third quantum number m detemines the eigenvalue of the operator 
describing the z-component of the angular momentum operator 

Lz ψnlm (r, ϑ, ϕ) =  m~ ψnlm (r, ϑ, ϕ) . (4.132) 
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Image removed for copyright purposes. 

Figure 4.12: Energy levels and term diagram for the hydrogen atom [3] 

In fact, the description of the electron wave functions is not yet complete, 
because the electron has an internal degree of freedom, that is its spin. The 
spin is an internal angular momentum of the electron that carries a magnetic 
moment with it. The Stern-Gerlach experiment shows that this degree of 
freedom has two eigenstates, i.e. the spin can be oriented parallel or anti­
parallel to the direction of an applied magnetic field. The values of the 
internal angluar mometum with respect to the quantization axis defined by 
an external field, that shall be chosen along the z-axis, are s = ±~/2. Thus 
the energy eigenstates of an electron in hydrogen are uniquely characterized 
by  four  quantum  numbers, n, l, m, and  s.  As  Figure  4.12  shows,  the energy  

spectrum is degenerate, i.e. for n > 1, there exist to each energy eigenvalue 
several eigenfunctions, that are only uniquely characterized by the additional 
quantum numbers for angular momentum and spin. This is called degeneracy 
because there exist to a given energy eigenvalue several states. 
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4.6 Wave Mechanics 

In this section, we generalize the concepts we have learned in the previous 
sections. The goal here is to give a broader description of quantum mechanics 
in terms of wave functions that are solutions to the Schroedinger Equation. 
In classical mechanics the particle state is determined by its position 

and momentum and the state evolution is determined by Newton’s law. In 
quantum mechanics the particle state is completely described by its wave 
function and the state evolution is determined by the Schroedinger equation. 
The wave function as a complete description of the particle enables us to 

compute expected values of physical quantities of the particle when a cor­
responding measurement is performed. The measurement results are real 
numbers, like the energy, o4 position or momentum the particle has in this 
state. The physically measureable quantities are called observables. In clas­
sical mechanics these observables or real variables like x for position, p for 
momentum or functions thereof, like the energy, which is called the Hamil­

2

tonian H(p, x) =
2
p
m + V (x) in classical mechanics. For simplicity, we state 

the results only for one-dimensional systems but it is straight forward to ex­
tend these results to multi-dimensional sytems. In quantum mechanics these 
observables become operators: 

x	 : position operator (4.133) 
~ ∂ 

p = : momentum operator	 (4.134)
j ∂x 
~2 ∂2 

H(p, x) =  − + V (x) :  Hamiltonian operator (4.135) 
2m ∂x2 

If we carry out measurements of these observables, the result is a real number 
in each measurement and after many measurements on identical systems we 
can make a statistics of these measurements and the statistics is completely 
described by the moments of the observable. 

4.6.1 Position Statistics 

The statistical interpretation of quantum mechanics enables us to compute 
the expected value of the position operator or any of its moments according 



233 4.6. WAVE MECHANICS 

to Z ∞ 

hxi = Ψ∗ (x, t) x Ψ (x, t) dx (4.136) Z−∞∞ 

hx mi = Ψ∗ (x, t) x m Ψ (x, t) dx (4.137) 
−∞ 

The expectation value of functions of operators can always be evaluated by 
defining the operator by its Taylor expansion Z ∞ 

hf(x)i = Ψ∗ (x, t) f(x) Ψ (x, t) dx (4.138) *−∞ + X∞ 1 n = f (n)(0) x 
n! 

n=0 ¿Z ÀX∞ 1 ∞ 
n = f (n)(0) Ψ∗ (x, t) x Ψ (x, t) dx 

n! 
n=0 −∞ 

4.6.2 Momentum Statistics 

The momentum statistics is then Z ∞ ~ ∂ hpi = Ψ∗ (x, t) 
j ∂x 

Ψ (x, t) dx (4.139) 
−∞ 

which can  be  written in terms  of  the wave function in the  wave  number  space,  
which we define now for symmetry reasons as the Fourier transform of the 
wave function where the 2π is symmetrically distributed between Fourier and 
inverse Fourier transform Z 

1 ∞ 

φ (k, t) =  √
2π 

Ψ (x, t) e−jkx dx, (4.140) Z−∞ 

Ψ (x, t) =  √1
2π 

∞ 

φ (k, t) ejkx dk. (4.141) 
−∞ 

Using the differentiation theorem of the Fourier transform and the generalized 
Parseval relation Z Z∞ ∞ 

φ1 
∗ (k) φ2 (k) dk = Ψ1 

∗ (x) Ψ2 (x) dx (4.142) 
−∞ −∞ 
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we find Z ∞ 

hpi = φ∗ (k, t) ~k φ  (k, t) dk (4.143) Z−∞∞ 
2 = ~k |φ (k, t)| dk. (4.144) 

−∞ 

The introduction of the symmetrically defined expectation value of an oper­
ator according Eq.(4.136), where x can stand for any operator can be carried 
out using the wave function in the position space or the wave number space 
using the corresponding represenation of the wave function and of the oper­
ator. 

4.6.3 Energy Statistics 

The analysis for the measurement of position or moment carries over to every 
observable in an analogous way. Thus the expectation value of the energy is 

Z ∞ 

hH(x, p)i = Ψ∗ (x, t) H(x, p) Ψ (x, t) dx (4.145) Z−∞ µ ¶∞ 1 ∂2 

= Ψ∗ (x, t) −
2m~2 ∂x2 

+ V (x) Ψ (x, t) dx.(4.146) 
−∞ 

If the system is in an energy eigenstate, i.e. 

Ψ (x, t) = ψn (x) e
j ωnt (4.147) 

with 
H(x, p) ψn (x) = En ψn (x) , (4.148) 

we obtain Z ∞ 

hH(x, p)i = Ψ∗ (x, t) En Ψ (x, t) dx = En. (4.149) 
−∞ 

If the system is in a superposition of energy eigenstates X∞
Ψ (x, t) =  cnψn(x)e

j ωnt . (4.150) 
n=0 

we obtain X∞
2 hH(x, p)i = En |cn| . (4.151) 

n=0 
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4.6.4 Arbitrary Observable 

There may also occur observables that are not simple to translate from the 
classical to the quantum domain, such as the product 

pcl · xcl = xcl · pcl (4.152) 

Classically it does not matter which variable comes first. However, if we 
tranfer this expression into quantum mechanics, the corresponding operator 
depends on the odering, for example 

~ ∂ 
pqm xqmΨ (x, t) =  (xΨ (x, t)) = (4.153) · 

j ∂x 
~ ~ ∂ 

= Ψ (x, t) +  x Ψ (x, t) , (4.154) 
j j ∂x µ ¶
~ 

= 
j 
+ xqm · pqm Ψ (x, t) . (4.155) 

The decision of which expression represents the correct quantum mechanical 
operator or eventually even a linear combination of the possible expressions, 
has to be based on a close examination of the actual measurement apparatus 
that would measure the corresponding observable. Finally, the expression 
also has to deliver results that are in agreement with experimental findings. 
If we have an operator that is a function of x and p and we have decided  

on a unique expression in terms of a power expansion in x and p 

~ ∂ 
g(x, p) gop(x, ) (4.156) → 

j ∂x

then we can compute its expected value either in the space domain or the 
wave number domain Z ∞ ~ ∂ hgopi = Ψ∗ (x, t) gop(x, j ∂x

) Ψ (x, t) dx (4.157) Z−∞∞ ∂ 
= φ∗ (k, t) gop(j , ~k) φ (k, t) dk (4.158) 

∂k−∞ 

That is this operator can be represented either in real space or in k-space as 
~ ∂ (j ∂gop(x, j ∂x ) or gop ∂k , ~k). 
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4.6.5 Eigenfunctions and Eigenvalues of Operators 

A differential operator has in general eigenfunctions and corresponding eigen­
values 

~ ∂ 
gop(x, ) ψn (x) = gnψ (x) , (4.159) 

j ∂x n 

where gn is the eigenvalue to the eigenfunction ψn (x) . An example for a 
differential operator is the Hamiltonian operator describing a partical moving 
in a potential 

1 ∂2 

Hop = −
2m~2 ∂x2 

+ V (x) (4.160) 

the corresponding eigenvalue equation is the stationary Schroedinger Equa­
tion 

Hopψ (x) = Enψ (x) . (4.161) n n 

Thus the energy levels of a quantum system are the eigenvalues of the corre­
sponding Hamiltonian operator. 
The operator for which Z Z 

ψ∗ 
n (x) (Hopψm (x)) dx = (Hopψn (x))

∗ ψm (x) dx, (4.162) 

for arbitrary wave functions ψn and ψm is called a hermitian operation. From 
this equation we find immediately that the expected values of a hermitian 
operator are real, which also has the consequence that the eigenvalues of 
hermitian operators are real. This is important since operators that represent 
observables must have real expected values and real eigenvalues since these 
are results of physical measurements, which are real. Thus observables are 
represented by hermitian operators. This is easy to proove. Let’s assume we 
have found two eigenfunctions and the corresponding eigen values 

gopψm = gmψm, (4.163) 

gopψn = gnψn. (4.164) 

Then Z Z 
ψ∗ 
ngopψm dx = gm ψ∗ 

nψm. (4.165) 
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By taking advantage of the fact that the operator is hermitian we can also 
write Z Z Z 

ψ∗ 
ngopψm dx = (gopψn)

∗ ψm dx = gn 
∗ ψn

∗ ψm dx (4.166) 

The right sides of Eqs.(4.165) and (4.166) must be equal Z 
(gm − g∗ ) ψ∗ ψ dx = 0  (4.167) n n m 

If n = m the integral can not vanish and Eq.(4.167) enforces gn = gn
∗, i.e. 

the corresponding eigenvalues are real. If n = m and the corresponding 6
eigenvalues are not degenerate, i.e. different eigenfunctions have different 
eigenvalues, then Eq.(4.167) enforces that the eigenfunctions are orthogonal 
to each other Z 

ψn 
∗ ψm dx = 0, for n = m. (4.168) 6

Thus, if there is no degneracy, the eigenfunctions of a hermitian operator are 
orthogonal to each other. If there is degeneracy, one can always choose an or­
thogonal set of eigenfunctions. If the eigenfunctions are properly normalized R 
ψ∗ ψ dx = 1, then the eigenfunctions build an orthonormal system n n Z 

ψ∗ 
nψm dx = δnm, (4.169) 

and are complete, i.e. any arbitrary function f (x) can be expressed as a 
superposition of the orthonormal basis functions ψn (x) X∞

f (x) =  cnψn (x) . (4.170) 
n=0 

Thus we can freely change the basis in which we describe a certain physical 
problem. To account fully for this fact, we no longer wish to use wave me­
chanics, ie. express the wave function as a function in position space or in 
k-space. Instead we will utilize a vector in an abstract function space, i.e. a 
Hilbert space. In this way, we can formulate a physical problem, without us­
ing a fixed representation for the state of the system (wave function) and the 
corresponding operator representations. This description enables us to make 
full use of the mathematical structure of Hilbert spaces and the algebraic 
properties of operators. 
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