
Chapter 3 

Quantum Nature of Light and 
Matter 

We understand classical mechanical motion of particles governed by New­
ton’s law. In the last chapter we examined in some detail the wave nature 
of electromagnetic fields. We understand the occurance of guided traveling 
modes and of resonator modes. There are characteristic dispersion relations 
or resonance frequencies associated with that. In this chapter, we want to 
summarize some experimental findings at the turn of the 19th century that 
ultimately lead to the discover of quantum mechanics, which is that matter 
has in addition to its particle like properties wave properties and electromag­
netic waves have in addition to its wave properties particle like properties. 
As turns out the final theory, which will be developed in subsequent chapters 
is much more than just that because the quantum mechanical wave function 
has a different physical interpretation than a electromagnetic wave only the 
mathematical concepts used is in many cases very similar. However, this is a 
tremendous help and guideance in doing and finally understanding quantum 
mechanics. 

3.1 Black Body Radiation 

In 1900 the physicist Max Planck found the law that governs the emission of 
electromagnetic radiation from a black body in thermal equilibrium. More 
specifically Planck’s law gives the energy stored in the electromagntic field in 
a unit volume and unit frequency range, [f, f +df ] with df = 1Hz , when the 
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electromagnetic field is in thermal equilibrium with its surrounding that is 
at temperature T. A black body is simply defined as an object that absorbs 
all light. The best implementation of a black body is the Ulbricht sphere, 
see Figure 3.1. 

Figure 3.1: The Ulbricht sphere, is a sphere with a small opening, where 
only a small amount of radiation can escape, so that the interior of the 
sphere is in thermal equilibrum with the walls, which are kept at a constant 
tremperature. The inside walls are typically made of diffuse material, so that 
after multiple scattering of the walls any incoming ray is absorbed, i.e. the 
wall opening is black. 

Figure 3.2 shows the energy density w(f) of electromagnetic radiation in 
a black body at temperature T . Around the turn of the 19th century w(f) 
was measured with high precision and one was able to distinguish between 
various approximations that were presented by other researchers earlier, like 
the Rayleigh-Jeans law and Wien’s law, which turned out to be asymptotic 
approximations to Planck’s Law for low and high frequencies. 
In order to find the formula describing the graphs shown in Figure 3.2 

Planck had to introduce the hypothesis that harmonic oscillators with fre­
quency f can not exchange arbitrary amounts of energy but rather only 
in discrete portions, so called quanta. Planck modelled atoms as classical 
oscillators with frequency f . Therefore, the energy of an oscillator must be 
quantized in energy levels corresponding to these energy quanta, which he 
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found to be equal to hf, where h is Planck’s constant 

h = 6.62620 ± 5 · 10−34Js.  (3.1) 
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Figure 3.2: Spectral energy density of the black body radiation according to 
Planck’s Law. 

As a model for a black body we use now a cavity with perfectly reflecting 
walls, somewhat different from the Ulbricht sphere. In order to tap of a small 
but negligible amount of radiation from the inside, a small opening is in the 
wall. We can make this opening so small that it does essentially not change 
the internal radiation field. Then the radiation in the cavity is the sum over 
all possible resonator modes in the cavity. If the cavity is at temperature 
T all the modes are thermally excited by emission and absorption of energy 
quanta from the atoms of the wall. 
For the derivation of Planck’s law we consider a cavity with perfectly 

conducting walls, see Figure 3.3. 
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Figure 3.3: (a) Cavity resonator with metallic walls. (b) Resonator modes 
characterized by a certain k-vector. 

If we extend the analysis of the plan parallel mirror waveguide to find the 
TE and TM modes of a three-dimensional metalic resonator, the resonator 
modes are TEmnp− and THmnp−modes characterized by its wave vector com­
ponents in x−, y−, and z−direction. The resonances are standing waves in 
three dimensions 

kx = 
mπ

, ky = 
nπ 

, kz = 
pπ 

, for m, n, p = 0, 1, 2, ... (3.2) 
Lx Ly Lz 

An expression for the number of modes in a frequency interval [f, f + df ] 
can be found by recognizing that this is identical to the number of points in 
Figure 3.3(b) that are in the first octant of a spherical  shell  with  thickness  
dk at k = 2πf/c.The volume occupied  by  one mode in the  space of wave  
numbers k is ∆V = 

L
π 
x L

π 
y L

π 
z 
= π

V 

3 
with the volume V = LxLyLz. Then the · · 

number of modes dN in the frequency interval [f, f + df ] in volume V are 

4πk2dk k2dk 
dN = 2

π3 = V , (3.3) · 
8 π2 
V 

where the factor of 2 in front accounts for the two polarizations or TE  and 
TH-modes of the resonator and the 8 in the denominator accounts for the 
fact that only one eighth of the sphere, an octand, is occupied by the positive 
wave vectors. With k = 2πf/c and dk = 2πdf/c, we obtain for the number 
of modes finally 
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8π 
dN = V

c3 
f2df (3.4) 

Note, that the same density of states is obtained using periodic boundary 
conditions in all three dimensions, i.e. then we can represent all fields in 
terms of a three dimensional Fourier series. The possible wave vectors would 
range from negative to positive values 

2mπ 2nπ 2pπ
kx = 

Lx 
, ky = 

Ly 
, kz = 

Lz 
f or  m, n, p = 0, ±1, ±2. . . .  (3.5) 

However, these wavevectors fill the whole sphere and not just one 8-th, which 
compensates for the 8-times larger volume occupied by one mode. If we imply 
periodic boundary conditions, we have forward and backward running waves 
that are independent from each other. If we use the boundary conditions of 
the resonator, the forward and backward running waves are connected and 
not independent and form standing waves. One should not be disturbed by 
this fact as all volume properties, such as the energy density, only depends 
on the density of states, and not on surface effects, as long  as the  volume  is  
reasonably large. 

3.1.1 Rayleigh-Jeans-Law 

The excitation amplitude of each mode obeys the equation of motion of a 
harmonic oscillator. Therefore, classically one expects that each of mode is 
in thermal equilibrium excute with a thermal energy kT according to the  
equipartition theorem, where k is Boltzmann’s constant with 

k = 1.38062 ± 6 10−23J/K. (3.6) · 
If that is the case the spectral energy density is given by the Rayleigh-Jeans-
Law, see Figure 3.2. 

1 dN 8π 
w(f) =  kT = f2kT. (3.7) 

V df c3 

As can be seen from Figure 3.2, this law describes very well the black body 
radiation for frequencies hf kT but there is an arbitrary large deviation ¿
for high frequencies. This formula can not be correct, because it predicts 
infinite energy density for the high frequency modes resulting in an "ultravi­
olet catastrophy", i.e. the electromagnetic field contains an infinite amount 
of energy at thermal equilibrium. 
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3.1.2 Wien’s Law 

The high frequency or short wavelength region of the black body radiation 
was first empirically described by Wien’s Law 

8πhf3 

w(f) =  e−hf/kT . (3.8) 
c3 

Wien’s law is surprisingly close to Planck’s law, however it slightly fails to 
correctly predicts the asympthotic behaviour at low frequencies or long wave­
lengths. 

3.1.3 Planck’s Law 

In the winter of 1900, Max Planck found the correct law for the black body 
radiation by assuming that each oscillator can only exchange energy in dis­
crete portions or quanta. We rederive it by assuming that each mode can 
only have the discrete energie values 

Es = s hf, for s = 0, 1, 2, ...  (3.9) · 

Thus s is the number of energy quanta stored in the oscillator. If the oscillator 
is a mode of the electromagnetic field we call s the number of photons. For the 
probability ps, that the oscillator has the energy Es we assume a Boltzmann­
distribution µ ¶ µ ¶

1 Es 1 hf 
ps = 

Z 
exp −

kT 
= 

Z 
exp −

kT
s , (3.10) 

where Z is a normalization factor such that the total propability of the os­
cillator to have any of the allowed energy values is 

X∞
ps = 1. (3.11) 

s=0 

Note, due to the fact th∠t the oscillator energy is proportional to the number 
of photons, the statistics are exponential statistics. From Eqs.(3.10) and 
(3.11) we obtain for the normalization factor 

∞
hf 1 

Z = 
X 

exp 

µ
s

¶ 

= ¡ ¢ , (3.12) 
hf 

s=0 

−
kT 1 − exp −

kT 
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which is also called the partition function. The photon statistics are then 
given by µ ¶ ∙ µ ¶¸

Es hf 
ps = exp  −

kT 
1 − exp −

kT 
−1 (3.13) 

or with β = hf 
kT X1 

∞
1 

ps = e−βs , with Z (β) =  e−βs = . (3.14) 
Z(β) 1 − e−β 

s=0 

Given the statistics of the photon number, we can compute moments of the 
probability distribution, such as the average number of photons in the mode X­ ® ∞

s 1 = s 1 ps. (3.15) 
s=0 

This first moment of the photon statistics can be computed from the partition 
function, using the "trick" ­ ® 1 ∂1 

s 1 = Z(β) =  Z(β) e−β , (3.16) 
Z(β) ∂ (−β)1 

which is 
1 hsi = 
hf . (3.17) 

exp 
kT − 1 

With the average photon number hsi , we obtain for the average energy stored 
in the mode 

hEsi = hsi hf, (3.18) 

and the energy density in the frequency intervall [f, f + df ] is then given by 

dN 
w (f) =  hEsi . (3.19) 

V df  

With the density of modes from Eq.(3.4) we find Planck’s law for the black 
body radiation 

8π f  2 hf 
w (f) =  

hf , (3.20) 
c3 exp 

kT − 1 

which was used to make the plots shown in Figure 3.2. In the limits of low 
and high frequencies, i.e. hf ¿ kT and hf À kT , respectively Planck’s law 
asympthotically approaches the Rayleigh-Jeans law and Wien’s law. 
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3.1.4 Thermal Photon Statistics 

It is interesting to further investigate the intensity fluctuations of the thermal 
radiation emitted from a black body. If the wall opening in the Ulbricht 
sphere, see Figure 3.1, is small enough very little radiation escapes through 
it. If the Ulbricht sphere is kept at constant temperature the radiation inside 
the Ulbricht sphere stays in thermal equilibrium and the intensity of the 
radiation emitted from the wall opening in a frequency interval [f, f + df ] is 

I (f ) = c w (f ) . (3.21) · 

Thus the intensity fluctuations of the emitted black body radiation is directly 
related to the photon statistics or quantum statistics of the radiation modes 
at freuqency f , i.e. related to the stochastic variable s : the number of 
photons in a mode with frequency f . This gives us direclty experimental 
access to the photon statistics of an ensemble of modes or even a single mode 
when proper spatial and spectral filtering is applied. 

Using the expectation value of the photon number 3.17, we can rewrite 
the photon statistics for a thermally excited mode in terms of its average 
photon number in the mode as 

s µ ¶s 

p s = 
hs i 

s+1 =
1 hs i 

, (3.22) 
(hs i + 1) (hs i + 1) (hs i + 1)

The thermal photon statistics display an exponential distribution, see Figure 
3.4. Before we move on, lets see how the average photon number in a given 
mode depends on temperature and the frequency range considered. Figure 
3.5 shows the relationship between average number of photons in a mode 
with frequency f or wavelength λ and temperature T. 
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Image removed for copyright purposes. 

Figure 3.4: Photon statistics of a mode in thermal equilibrium with a mean 
photon number < s >= 10 (a) and < s >= 1000 (b). 

Image removed for copyright purposes. 

Figure 3.5: Average photon number in a mode at frequency f or wavelength 
λ and temperature. 

Figure 3.5 shows that at room temperature and micorwave frequencies 
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large numbers of photons are present due to the thermal excitation of the 
mode. This is the reason that at room temperature the thermal noise over­
whelms eventual quantum fluctuations. However, quantum fluctuations are 
important at high  frequencies,  which  start for  room  temperature in  the  far to  
mid infrared range, where on average much less than one photon is thermally 
excited. 
The variance of the photon number distribution is ­ ® 

σ2 
s = s 2 − hsi 2 . (3.23) 

By generalizing Eq.(3.12) to the m-th moment by replacing the exponent 1 
by m X∞

m mhs i = s ps (3.24) 
s=0 

1 ∂m 

= Z (β) , (3.25) 
Z ∂ (−β)m 

we obtain for the second moment ­ ® ­ ® 
s 2 = 2Z (β) 2 e−2β − Z (β) 2 e−2β = 2  s 2 + hsi . (3.26) 

and therefore for the variance of the photon number using Eq.(3.23) is 

σ2 
s = hsi 

2 + hsi . (3.27) 

As expected from the wide distribution of photon numbers the variance is 
larger than the square of the expectation value. This means that if we look 
at the light intensity of a single mode the intensity is subject to extremly 
strong fluctuations as large as the mean value. So why don’t we see this rapid 
thermal fluctuations when we look at the black body radiation coming, for 
example, from the surface of the sun? Well we don’t look at a single mode 
but rather at a whole multitude of modes. Even when we restrict us to a 
certain narrow frequency range and spatial direction, there is a multitude 
of transverse modes presence. We obtain for the average total number of 
photons in a group of modes and its variance 

NX 
hstoti = hsii , (3.28) 

i=1 

NX 
σ2 = σ2 . (3.29) tot i 

i=1 
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Since these modes are independent identical systems, we have 

hstoti = N · hsi . (3.30) 

σ2 
¡ 2 ¢ 1 2 

tot = N hsi + hsi = 
N 
hstoti + hstoti . 

Due to the averaging over many modes, the photon number fluctuations in 
a large number of modes is reduced compared to its mean value 

σ2 1 1 
SNR = tot 

2 = + . (3.31) 
hstoti N hstoti 

Thus if one averages over many modes and has many photons in these modes 
the intensity fluctuations become small. 

3.1.5 Mode Counting 

It is interested to estimate the number of modes one is averaging over given 
a certain emitting surface and a certain measurement time, see Figure 3.6. 

x 

Lx 

Ly 

Lz 

As AD 
kAcΩc 

z 
y 

Figure 3.6: Counting of longitudinal and transverse modes excited from a 
radiating surface of size As. 

If the area As is emitting light, it will couple to the modes of the free 
field. To count the modes we put a large box (universe) over the experi­
mental arrangement under consideration. The emitting surface is one side of 
the box. The light from this surface, i.e. specifying the transverse electric 
and magnetic fields, couples to the modes of the universe with wave vectors 
according to Eq.(3.5). 
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Longitudinal Modes 

The number of longitudinal modes, that propagate along the positive z-
direction in the frequency interval ∆f can be derived from ∆k = (2π/Lz)∆N 
and ∆k = (2π/c0)∆f 

Lz
∆N = ∆f, (3.32) 

c0 

or using the propagation or measurement time over which the experiment 
extends 

τ = Lz/c0, (3.33) 

we obtain for the number of longitudinal modes that are involved in the 
measurement that is carried out over a time intervall τ and a frequency 
range ∆f 

∆N = τ∆f .  (3.34) 

Transverse Modes 

The free space  modes that arrive at the  detector  area  AD will not only have 
wave vectors with a z−component, but also transverse components. Lets as­
sume that the detector area is far from the emitting surface, and we consider 
only the paraxial plane waves. The wave vectors of these waves at a given 
frequency or free space wave number k0 can be approximated by  µ ¶

2πm 2πn �kmn = , , k0 with m, n = 0, 1, 2, ...  (3.35) 
Lx Ly 

where m and n are transverse mode indices.  Then  one mode occupies the  
volume angle 

4π2 

Ωc = ,
LxLy k0

2 

= λ2/As . (3.36) 0

If the modes are thermally excited, the radiation in individual modes is 
uncorrelated. Therefore, if there is a detector at a distance r then only 
the field within an area  

Ac = r 2Ωc , (3.37) 
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is correlated. If the photodetector has an area Ad, then the number of 
transverse modes detected is 

Nt = Ad/Ac. (3.38) 

The total number of modes detected is 

Ad AdAs
Ntot = τ ∆f = τ ∆f .  (3.39) 

Ac r2λ0
2 

Note, that there is perfect symmetry between the area of the emitting and 
receiving surface. The emitter and the receiver could both be black bodies. 
If  one of them  is at a higher  temperature than the  other,  there is a net  flow of 
energy from the warmer body to the colder body until equilibrium is reached. 
This would not be possible without interaction over the same number of 
modes. Thus the formula which is completely unrelated to thermodynamics 
is necessary to fulfill one of the main theorems of thermodynamcis, that is 
that energy flows from warmer to colder bodies. 

3.2 Photo-electric Effect 

Another strong indication for the quantum nature of light was the photoelec­
tric effect by Lenard in 1903. He discovered that when ultra violet light is 
radiated on a photo cathode electrons are emitted, see Figure 3.7. 

Figure 3.7: Photo-electric effect: (a) Schematic setup and (b) dependence of 
the necessary grid voltage to supress the electron current as a funtion of light 
frequency. 
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Lenard surrounded the photo cathode by a grid, which is charged by the 
emitted electrons up to a voltage U, which blocks the emission of further 
electrons. Figure 3.7 shows the blocking voltage as a function of the fre­
quency of the incoming light. Depending on the cathode material there is a 
cutoff frequency. For lower frequencies no electrons are emitted at all. This 
frequency as well as the blocking voltage does not depend on the intensity 
of the light. In 1905, this effect was explained by Einstein introducing the 
quantum hypothesis for radiation. According to him, each electron emission 
is caused by a light quantum, now called photon. This photon has an energy 
hf and this quantum energy must be larger than the work function We of the 
material. The remainder of the energy mev

2/2 is transfered to the electron 
in form of kinetic energy. The resulting energy balance is 

hf = We +
1 
mev 2 (3.40) 
2 

The kinetic energy of the electron can be used to reach the grid surrounding 
the photo cathode until the charging energy due to the grid potential is equal 
to the kinetic energy of the electrons 

eU =
1 
mev 2hf = We +

1 
mev 2 (3.41) 

2 2 
or 

1 −U = (hf − We), for hf > We. (3.42) 
e 

This equation explains the empirically found law by Lenard explaining the 
cutoff frequency and the charge buildup as a function of light frequency. 
Einstein was first to introduce  the idea that the  electromagnetic  field contains 
light quanta or photons. 

3.3 Spontaneous and Induced Emission 

The number of photons in a radiation mode may change via emission of 
photon into the mode or absorption of a photon from the mode by atoms, 
molecules or a solid state material. Einstein introduced a phenomenological 
theory of these processes in order to explain how matter may get into thermal 
equilibrium by interaction with the modes of the radiation field. He consid­
ered the interaction of a mode with atoms modeled by two energy levels E1 

and E2, see Figure 3.8. 
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Figure 3.8: Energy levels of a two level atom and populations. 

n1 and n2 are the population densities of these two levels considering a 
whole ensemble of these atoms. Transitions are possible in the atom between 
the two energy levels by emission of a photon at a frequency 

f = 
E2 − E1 (3.43) 

h 

Absorption of a photon is only possible if there is energy present in the 
radiation field. Einstein wrote for the corresponding transition rates, which 
should be proportional to the population densities and the photon density at 
the transition frequency 

−

dn1 ̄̄̄¯
 =


dn2 ̄̄̄¯
dt dtAbs Abs 

= B12n1w(f21). (3.44) 

The coefficient B12 characterizes the absorption properties of the transition. 
Einstein had to allow for two different kind of processes for reasons that be­
come clear a little later. Transitions induced by the already present photons 
or radiation energy as well as spontaneous transitions 

dn1 

dt


¯̄̄̄


Em 

= − 
dn2 

dt


¯̄̄̄

 =B21 n2 w (f21) +A21 n2 . (3.45) 
Em 

The coefficient B21describes the induced and A21 the spontaneous emissions. 
The latter transitions occur even in the absence of any radiation and the 
corresponding coefficient determines the lifetime of the excited state 

= A−1τ sp 21 , (3.46) 
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in the absence of the radiation field. The total change in the population 
densities is due to both absorption and emission processes ¯̄̄̄


 +

dni ̄̄̄¯
dni dni 

,
 for i = 1, 2 (3.47) =

dt dt dtEm Abs 

Using Eqs.(3.44) and (3.45) we find 

dn1 dn2 
= (B12 n1 − B21 n2) w (f21)− A21 n2. (3.48) −
 =


dt dt


In thermal equilibrium the energy density of the radiation field must fulfill 
the condition 

w (f21) =  
A21/B12 

, (3.49) 
n1/n2 − B21/B12 

while  the atomic ensemble itself  should also be in thermal  equilibrium  which  
again should be described by the Boltzmann statistics, i.e. the ratio between 
the population densities are determined by the Boltzmann factor 

n2/n1 = exp

µ


−

E2 − E1 

kT


¶


.
 (3.50)


And with it the energy density of the radiation field must be 

¢ A21/B12 
hf21 

(3.51)
w (f21) = ¡
A comparison with Planck’s law, Eq.(3.20), gives 

B21 = B12, (3.52) 

and 
8π hf3 

A21 = 
c3 

21 B12. (3.53) 

Clearly, without the spontaneous emission process it is impossible to arrive 
at Planck’s Law in equilibrium. The spectral energy density of the radiation 
field can  be  rewritten with the  average  photon number in the  modes at the  
transition frequency f21 as 

.

− B21/B12exp

kT 

8π f2 1 
w (f21) =  

c3 
21 hf21 hsi , with hsi = hsi = 

exp hf21 − 1 
. (3.54) 

kT 
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Or we can write 
A21 

w (f21) =  hsi . 
B12 

With that relationship Eq.(3.45) can be rewritten as ¯̄̄̄



¯̄̄̄



dn1 dn2 
=A21 n2 (hsi + 1)  , (3.55) = −

dt
 dt
Em Em 

which indicates that the number of spontaneous emissions is equvalent to in­
duced emissions caused by the presence of a single photon per mode. Having 
identified the coefficients describing the transition rates in the atom interact­
ing with the field from equilibrium considerations, we can rewrite the rate 
equations also for the non equilibrium situation, because the coefficients are 
constants depending only on the transition considered 

dn1 dn2 1 
= − = [(n2−n1) hsi + n2] . (3.56) 

dt dt τ sp 

With each transition from the excited state of the atom to the ground state 
an emission of a photon goes along with it. From this, we obtain a change 
in the average photon number of the modes 

d hsi 
dt 

= V 
dn1 

dt 
, (3.57) 

which is 
d hsi 
dt 

= 
V 
τ sp 

[(n2 − n1) hsi + n2] . (3.58) 

Again the first term describes the stimulated or induced processes and the 
second term the spontaneous processes. As we will see later, the stimulated 
emission processes are coherent with the already present radiation field that is 
inducing the transitions. This is not so for the spontaneous emissions, which 
add noise to the already present field. For n1 > n2 the stimulated processes 
lead to a decrease in the photon number and the medium is absorbing. In the 
case of inversion, n2 > n1, the photon number increases exponentially. Ac­
cording to Eq.(3.50) inversion corresponds to a negative temperature, which 
is an indication for a non equilibrium situation that can only be maintained 
by additional means. It is impossible to achieve inversion by simple irradia­
tion of the atoms with intense radiation. As we see from Eq.(3.58) in steady 
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state the ratio between excited state and ground state population is 

n2 
= 

hsi 
,	 (3.59) 

n1 hsi + 1

which at most approaches equal population for very large photon number. 
However, such a process can be exploited in a three or four level system, see 
Figure 3.9, to achieve inversion. 

Figure 3.9: Three level system: (a) in thermal equilibrium and (b) under 
optical pumping at the transition frequency f31. 

By optical pumping population from the ground state can be transfered to 
the excited level with energy E3. If there is a fast relaxation from this level to 
level E2, where level two in contrast has a long lifetime, it is conceivable that 
an inversion between level E2 and E1 can build up. If inversion is achieved 
radiation at the frequency f21 is amplified. 

3.4	 Matter Waves and Bohr’s Model of an 
Atom 

By systematic scattering experiments Ernest Rutherford showed in 1911, that 
the negative charges in an atom are homogenously distributed in contrast to 
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the positive charge which is concentrated in a small nucleus about 10,000 
times smaller than the atom itself. The nucleus also carries almost all of the 
atomic mass. Rutherford proposed a model of an atom where the electrons 
circle the nucleas similar to the planets circling the sun where the gravita­
tional force is replaced by the Coulomb force between the electrons and the 
nucleus. 
This  model had  many  short comings.  How  was  it possible that the  elec­

trons, which undergo acceleration on their trajectory around the nucleus, do 
not radiate according to classical electromagnetism, loose energy and finally 
fall into the nucleus? Due to advances in optical instrumentation the light 
emitted from thermally excited atomic vapors was known to be in the form 
of discrete lines. Balmer found in 1885 that these lines could be expressed 
by the rule µ ¶

1 1 1 
λ 
= RH 

22 
−

n2 
, with n = 3, 4, 5, ... (3.60) 

where λ is the wavelength of light and RH = 10.968 μm−1 is the Rydberg · 
constant for hydrogen. For n = 3  this corresponds to the red Hα-line at 
λ = 656.3nm, for n →∞ one obtains the wavelength of the limiting line in 
this series at λ = 364.6nm, see Figure 3.10. 

Image removed for copyright purposes. 

Figure 3.10: Balmer series on a wave number scale. 

. 

In the subsequent spectroscopy work further sequences where found: 
1. Lyman Series: µ ¶

1 1 1 
= RH 2 

−
n2 

, with n = 2, 4, 5, ... (3.61) 
λ 1
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2. Balmer Series: 

1 
λ 
= RH 

µ 
1 
22 
− 
1 
n2 

¶ 

, with n = 3, 4, 5, ...  (3.62) 

3. Paschen Series: 

1 
λ 
= RH 

µ 
1 
32 
− 
1 
n2 

¶ 

, with n = 4, 5, 6, ...  (3.63) 

4. Brackett Series: 

1 
λ 
= RH 

µ 
1 
42 
− 
1 
n2 

¶ 

, with n = 5, 6, 7, ...  (3.64) 

5. Pfund Series: 

1 
λ 
= RH 

µ 
1 
52 
− 
1 
n2 

¶ 

, with n = 6, 7, 8, ...  (3.65) 

The Lyman series in the UV-region of the spectrum, whereas the Pfund series 
is in the far infrared. These sequences can be represented as transitions 
between energy levels as shown in Figure 3.11. 
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Image removed for copyright purposes. 

Figure 3.11: Energy level diagram for the hydrogen atom. 

. 

In 1913, Niels Bohr found the quantization condition for the electron 
trajectories in the Hydrogen atom and he was able to derive from that the 
spectral series discussed above. He postulated that only those electron tra­
jectories are allowed that within one rountrip around the nucleus have an 
action equal to a multiple of Planck’s quantum of action h. I 

p ds = nh,  with n = 1, 2, 3.... (3.66) · 

Second, he postulated that the electron can switch from one energy level or 
trajectory to another one by the emission or absorption of a photon with an 
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energy equivalent to the energy difference between the two energy levels, see 
Figure 3.12. 

hf = ∆E. (3.67) 

Image removed for copyright purposes. 

Figure 3.12: Transition between different energy levels in the hydrogen atom. 

Assuming a circular trajectory of the electron with radius rn around the 
nucleus, the quantization condition for the electron trajectory (3.66) leads to 

2πrnmvn = nh, with n = 1, 2, 3... (3.68) 

The other condition for radius and velocity of the electron around the nucleus 
is given by the equality of Coulomb and centrifugal force at radius rn, which 
leads to 

2 2e mv
= n , (3.69) 

4πε0rn 
2 rn 

or 
2e

vn 
2 = . (3.70) 

4πε0rnm 
Substituting this value for the electron velocity in the squared quantization 
condition (3.68), we find the radius of the electron trajectories 

ε0h
2

2 rn = n . (3.71) 
πe2m 

The radius of the  first trajectory, called Bohr radius is r1 = 0.529 10−10m.· 
The velocities on the individual trajectories are 

e2 1 
vn = . (3.72) 

2ε0h n 
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The highest velocity is found for the tightest trajectory around the nucleus, 
i.e.	 for n = 1, which can be expressed in terms of the velocity of light as 

e2 1 
v1 = c = c,	 (3.73) 

2ε0hc 
· 

137 
· 

where e2 
= 1 is the fine structure constant. 

2ε0hc 137 
The energy of the electrons on these trajectories with the quantum num­

ber n is due to both potential and kinetic energy 

1 2 me4 

Ekin = mvn = ,	 (3.74) 
2 8ε20h

2n2 

Epot = − 
e2 

4πε0rn 
= − 

me4 

4ε2 
0h
2n2 

. (3.75) 

or 

En = Ekin + Epot	 (3.76) 
4me

Epot = −
8ε0
2h2n2 

.	 (3.77) 

Note, the energy of a bound electron is negative. For n →∞, En = 0. The 
electron becomes detached from the atom, i.e. the atom becomes ionized. 
The lowest and most stable energy state of the electron is for n = 1  

4me
En = −

8ε2h2 
= −13.53eV,	 (3.78) 

0

with correspondes to the ground state in hydrogen. When a transition be­
tween two of this energy eigenstates occurs a photon with the corresponding 
energy is released 

hf = Ek − En, (3.79) 
me4 µ 

1 1 
¶

= −
8ε0
2h2 k2 

−
n2 

.	 (3.80) 

3.5  Wave Particle Duality  
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Bohr’s postulates were not able to explain all the intricacies of the observed 
spectra and they couldn’t explain satisfactory the structure of the more com­
plex atoms. This was only achieved with the introduction of wave mechanics. 
In 1923, de Broglie was the first to argue that matter might also have wave 
properties. Starting from the equivalence principle of mass and energy by 
Einstein 

E0 = m0 c0
2 (3.81) 

he associated a frequency with this energy accordingly 

f0 = m0 c 20/h. (3.82) 

Since energy and frequency are not relativistically invariant quantities but 
rather components of a four-vector which has the particle momentum as its 
other components (E0/c0, px,py, pz) or (ω0/c0, kx,ky, kz), it was a necessity 
that with the energy frequency relationship 

E = hf = ~ω, (3.83) 

there must also  be a wave  number  associated  with  the momentum  of a particle  
according to 

p = ~k. (3.84) 

In 1927, C. J. Davisson and L. H. Germer experimentally confirmed this 
prediction by finding strong diffraction peaks when an electron beam pene­
trated a thin metal film. The pictures were close to the observations of Laue 
in 1912 and Bragg in 1913, who studied the structure of crystaline and poly 
crystaline materials with x-ray diffraction. 
With that finding the duality between waves and particles for both light 

and matter was established. Duality means that both light and matter have 
simultaneous wave and particle properties and it depends on the experimental 
arrangement whether one or the other property manifests itself strongly in 
the experimental outcome. 
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