
6.973 Communication System Design 03/06/06

Problem Set 3 – Bluespec Introduction

Getting Started

To use the Bluespec compiler, add the following lines to your .cshrc.mine file:

1. add 6.375

2. setenv BSPATH /mit/6.375/tools/bluespec/current

3. setenv BLUESPECDIR $BSPATH/lib

4. set path = ($BSPATH/bin $path)

5. set path = (/mit/6.973/tools/bluespec $path)

6. setenv BS_VLIB_PATH $BSPATH/lib/Verilog

7. setenv NCVLOG_ROOT_DIR `cds_root ncvlog`

A good place to put these lines is after your vppsim configuration commands but before your setenv
LD_LIBRARY_PATH command. You’ll need to launch a new terminal window for these settings to take effect. In
addition to these modifications to your startup script, you’ll need to edit your VppSim/.vppsimrc file and add the
following lines:

ncverilog_command: ncverilog

ncverilog_ams_command: ncverilog +ncams

The code for this problem set is located in the course locker at:

/mit/6.973/homework3

I recommend that you copy this entire directory (using cp –R) to your home directory so that you can make changes
to the code and schematics. To make Cadence aware of this new version of the code, edit your VppSim/cds/cds.lib
file and change the 80211a_ lines to the following:

DEFINE 80211a_transmitter [your path to homework3]/homework3/80211a_transmitter

DEFINE 80211a_receiver [your path to homework3]/homework3/80211a_receiver

To make sure everything is still working, open up Cadence, netlist the transmitter_harness, and run vppsim –cpp
and make in the appropriate directory. (If you are unfamiliar with these steps, consult the Problem Set 2 Addendum.)

Using VppSim for C++/Verilog Co-Simulation

Before writing your own Bluespec modules, it will be helpful to simulate the system using the Bluespec
implementation of the Convolutional Encoder that was covered in Tutorial 4. The first thing you will need to do is
compile the Bluespec description of the Encoder into Verilog so that it can be used by VppSim. To do this, first
create the directory:

[your path to homework3]/homework3/80211a_transmitter/convolutional_encoder/verilog

In the same way that the C++ implementations of the modules live in the cppsim subdirectory, the Verilog
implementations will live in the verilog subdirectory of each module. Next, cd into this newly created directory and
copy the Bluespec description of the Convolutional Encoder there. This file can be found at:

/mit/6.973/homework3/ConvEncoder.bsv

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [DD Month YYYY].

Finally, from within the Convolutional Encoder’s verilog subdirectory, issue the command
compile_convolutional_encoder. This script will do two things: run the Bluespec compiler on ConvEncoder.bsv
and, if the compilation is successful, call a perl script that will convert the Verilog generated by the Bluespec
compiler into a format that is recognizable by VppSim. The end result of this will be a file named verilog.v in the
current directory that contains the VppSim compatible Verilog implementation of the Convolutional Encoder; this is
the file that VppSim will be looking for.
To run the simulation using our newly created Convolutional Encoder implementation, first cd into the directory
where we make and run the simulator (VppSim/SimRuns/80211a_transmitter/transmitter_harness) and issue
the command vppsim –vpp (note the change from -cpp to -vpp). Because simulating Verilog modules takes longer
than simulating C++ modules, we will be running the simulator on smaller amounts of data in this problem set (the
number and length of the messages have already been set for you in the tx mac module). Edit the test.par file and
set num_sim_steps to 35e4 to take advantage of this shorter simulation time.

Within the same directory (VppSim/SimRuns/80211a_transmitter/transmitter_harness), edit the file
test.hierarchy. In this file you will see the names of all the modules you are simulating preceded by either a “c”
or a “v”. Any module with its name preceded by a “c” will be simulated using its C++ implementation and any
module preceded by a “v” will be simulated using its Verilog implementation. Find the convolutional_encoder
module and switch it to “v” (note the words cppsim and verilog in parentheses next to the module’s name; this
means that both implementations are available for this module). Save the file, return to a command prompt in the
simulation directory, run vppsim -vpp again and make to build and run the simulator. When the simulation has
completed, run bit_errors on the output files to make sure the system is working.

Problem 1 - Bluespec Implementation of the Scrambler (60 points)

Use what you have learned from the Convolutional Encoder’s Bluespec implementation to create a Bluespec
implementation of the Scrambler module (name this file Scrambler.bsv). Simulate your implementation in the same
manner as you did the Convolutional Encoder and make sure that bit_errors reports zero errors for your
simulation’s output. You only need to submit Scrambler.bsv containing your implementation of the Scrambler.

HINTS:

1.	 Use the Convolutional Encoder’s Bluespec implementation as a starting point and modify it to become the
Scrambler.

2.	 When you are ready to compile and test your design, the command compile_scrambler should be used
instead of compile_convolutional_encoder in the procedure described in the previous section.

3.	 The data type of your input and output ports should be identical to one of the types defined in the
Convolutional Encoder module.

4.	 Remember that the first bit of a VppSim vector will be mapped to the most significant bit of a Verilog bit
vector. This means that if you have a 24 bit VppSim vector x connected to a Verilog (or Bluespec) bit
vector y, x.get_elem(0) will be mapped to y[23].

Problem 2 - Bluespec Implementation of the IFFT (40 points)

You have been given a skeleton of an 8 point IFFT implementation. Fill in the missing Bluespec code to make the
module work. The code and test harness for this module is also located in the /mit/6.973/homework3 directory
under ifft_8. Once this directory has been copied to your local homework3 directory, you’ll need to add it to
Cadence in the same way you added the 80211a_transmitter and _receiver. Namely, you must add the following
line to your VppSim/cds/cds.lib file:

DEFINE ifft_8 [your path to homework3]/homework3/ifft_8

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [DD Month YYYY].

The skeleton Bluespec code is provided in ifft_8/ifft8/verilog. You can compile it using the command
compile_ifft. To help you, a C version of this module has been provided in /mit/6.973/homework3. You can use
this code as an example of how to implement the IFFT, as well as a way to check your results. To compile this code,
use the following command:

gcc –o ifft_rtl ifft_rtl.c -lm

Submit the completed version of ifft8.bsv.

HINTS:

1.	 The ifft8/verilog directory contains 3 files: ifft8.bsv, ComplexF.bsv, and SVector.bs. You only need
to worry about ifft8.bsv, the other two files are libraries that will be needed when compiling your design.

2.	 The ComplexF type has the multiplication, addition, and subtraction operators overloaded to perform
complex arithmetic. Addition and subtraction will scale the result by a factor of 0.5 to avoid overflow.

3.	 Although permute and twiddle are functions, you can access them like arrays (for example,
twiddle[0][3]).

4.	 Because the elements of a VppSim vector are mapped to Verilog in reverse order, you should access the
vectors in reverse order (e.g. inputs[7-i]). This does not apply to the permute and twiddle arrays.

5.	 A diagram of the IFFT is provided on the last page of this handout.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [DD Month YYYY].

http:SVector.bs

