
6.973 Communication System Design 02/24/06

Problem Set 2 Addendum

Data Sets

The problems make reference to two different data sets. To have the TX MAC generate these data sets, use the
following parameters:

Data Set 1 Data Set 2

NUM_MESSAGES = 60 NUM_MESSAGES = 60
MESSAGE_SIZE = 20 (bytes) MESSAGE_SIZE = 20 (bytes)
RATE = 2 (12 Mbps) RATE = 3 (24 Mbps)

Channel Models

The problem set also makes reference to two different channel models. The parameters for these two models are
specified below:

Channel Model A

AWGN_VARIANCE = 0.005
DELTA_F = 0

Channel Model B

AWGN_VARIANCE = 0.02
DELTA_F = 0

Do not use the multi-path parameters (MP_AMP[] and MP_DELAY[]) except where directed in Problem 4.

Getting Started

The code for the behavioral model you will use in the problem set is located in the course locker at:

/mit/6.973/homework2

I recommend that you copy this entire directory (using cp –R) to your home directory so that you can make changes
to the code and schematics. To view the modules in Cadence and get them ready to execute, follow these steps:

1.	 Make sure you have added the commands in the CppSim/Cadence Tutorial to your .cshrc.mine file and
that you have made copies of the VppSim and menus directories as directed in the tutorial.

2.	 In addition, add the following command to your .cshrc.mine file:

setenv LD_LIBRARY_PATH /usr/lib

3.	 Edit your VppSim/cds/cds.lib file and add the following lines:

DEFINE 80211a_transmitter [your path to homework2]/homework2/80211a_transmitter
DEFINE 80211a_receiver [your path to homework2]/homework2/80211a_receiver

4.	 Run icms & from your VppSim/cds directory (just like in the tutorial)
5.	 Call up the schematic for the transmitter_harness cell in the 80211a_transmitter library
6.	 Go to Options → VppSim to bring up the VppSim dialog box
7.	 Make sure CppSim is selected and click “Netlist Only”
8.	 Click on “Edit Sim File” to create a test.par for this simulation. Fill in the following parameters:

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [DD Month YYYY].

a. num_sim_steps: 50e5
b. Ts: 1/10e9
c. probe: clk

You are now ready to compile and run the simulation. To do so, first cd into your VppSim/SimRuns/
80211a_transmitter/transmitter_harness directory. To complete the first step of the compilation, run
vppsim –cpp. To complete the second step of the compilation and run the simulation, run make.

If the simulation is working properly, you should see a long stream of debugging output being generated; you can
grep through this output to view it in a more meaningful way as described later. If you want to run the simulation
again, run ./test. If you change some of the module code, you will need to recompile with vppsim –cpp and make,
and if you change anything in any of the schematics, you will need to re-netlist from the Cadence VppSim dialog
box as well as recompile.

Viewing and Editing the CppSim Code

The CppSim code for each module is located in:

[your path to homework2]/80211a_[library name]/[module name]/cppsim/text.txt

where [library name] is either transmitter or receiver, depending on which high-level block the module resides
in. For an explanation of the different sections in CppSim module code, see the CppSim/Cadence Tutorial or the
CppSim documentation.

Grepping the Simulator Output

To make any sense of the simulator’s output, you will need to grep it for the modules you are interested in. Each
module will generate its debugging information for each cycle on a line preceded by it’s debug code. The debug
codes for the modules are listed in the following table:

Module Code
TX MAC
Analog TX
Channel Model
Analog RX
RX MAC

A
B
C
D
E

TX Controller
Scrambler
Encoder
Interleaver
Mapper
IFFT
Cyclic Extend

F
G
H
I
J
K
L

Synchronizer
Serial to Parallel
FFT
Detector
Viterbi
RX Controller
Descrambler

M
N
O
P
Q
R
S

To grep for the output of a module or set of modules, follow your make or ./test command with a grep statement
that will match lines with a first letter corresponding to the debug code of the modules you are interested in. For
example:

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [DD Month YYYY].

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [DD Month YYYY].

 ./test | grep “^[GH]”

 or
 make | grep “^[GH]”

will output the debugging info for the Scrambler and Convolutional Encoder modules, and:

 ./test | grep “^[^BCD]”

will output all debugging information except that of the Analog TX, Channel Model, and Analog RX modules.

Useful Tools

Two programs have been provided to aid the debugging you will have to do in Problem 1. The first is a compiled
version of the simulator before the three errors were introduced into the transmitter. This program is called golden
and is provided in the homework2 directory. golden can be run just like the test executable you will be creating and
can be grepped in like fashion.

The other program, called bit_errors, will compare two binary files and output the number of bits in which these
files differ. During the course of a simulation, the TX MAC and RX MAC modules will generate output files, called
tx_mac_output and rx_mac_output, that contain all of the data sent by the transmitter and received by the receiver,
respectively. bit_errors was designed to compare these files and give you the number of bit errors incurred during
transmission. You can use this program (along with the size of the files) to calculate bit error rate for Problems 2 and
4, and to verify that you have corrected the errors in the transmitter in Problem 1. Running bit_errors on the
output files of golden should report that there are zero bit errors.

Remote Login Servers

Two remote login servers have been set up for our class to share with 6.375. The servers are Athena Linux machines
so they will be able to run all of the tools we will be using in 6.973 this semester, however, if you want to use
graphical tools such as icms and are running Windows, you will need to have an X server running on your local
machine (such as Exceed or XWin32). The two servers are called:

 vlsifarm-01.mit.edu

 and
 vlsifarm-02.mit.edu

and you should all have remote login access to them. These servers have dual XEON 3.0 GHz processors and 1 GB
of RAM each, and should be faster than the machines in 38-301, but they may become heavily loaded close to the
due dates of 6.973 and 6.375 assignments.

