
MIT OpenCourseWare
http://ocw.mit.edu 

6.945 Adventures in Advanced Symbolic Programming 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms




Copyright ©c 2008, 2009 Sun Microsystems, Inc. (”Sun”). All 
rights are reserved by Sun except as expressly stated as follows. 
Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted, provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation 
on the first page. To copy otherwise, or republish, to post on 
servers, or to redistribute to lists, requires prior specific written 
permission of Sun. 

1 



With Multicore, a Profound Shift 

•	 Parallelism is here, now, and in our faces
 
> Academics have been studying it for 50 years
 
> Serious commercial offerings for 25 years
 
> But now it’s in desktops and laptops
 

•	 Specialized expertise for science codes and databases and
 
networking
 

•	 But soon general practitioners must go parallel 

•	 An opportunity to make parallelism easier for everyone
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This Talk Is about Performance


The bag of programming tricks
 

that has served us so well
 

for the last 50 years
 

is
 

the wrong way to think
 

going forward and
 

must be thrown out.
 

3 



Why? 
•	 Good sequential code minimizes total number of operations.
 

> Clever tricks to reuse previously computed results.
 
> Good parallel code often performs redundant operations
 

to reduce communication. 

•	 Good sequential algorithms minimize space usage.
 
> Clever tricks to reuse storage.
 
> Good parallel code often requires extra space to permit
 

temporal decoupling. 

•	 Sequential idioms stress linear problem decomposition.
 
> Process one thing at a time and accumulate results.
 
> Good parallel code usually requires multiway problem
 

decomposition and multiway aggregation of results. 
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Let’s Add a Bunch of Numbers


DO I = 1, 1000000
 
SUM = SUM + X(I)
 

END DO
 

Can it be parallelized? 
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Let’s Add a Bunch of Numbers


SUM = 0 // Oops! 

DO I = 1, 1000000
 
SUM = SUM + X(I)
 

END DO
 

Can it be parallelized? 

This is already bad! 
Clever compilers have to undo this. 
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What Does a Mathematician Say? 

1000000
 

xi or maybe just x
 
i=1
 

Compare Fortran 90 SUM(X).
 

What, not how.
 
No commitment yet as to strategy. This is good.
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Sequential Computation Tree


SUM = 0 
DO I = 1, 1000000 

SUM = SUM + X(I) 
END DO 
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Atomic Update Computation Tree (a)


SUM = 0 
PARALLEL DO I = 1, 1000000 
SUM = SUM + X(I) 

END DO 
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Atomic Update Computation Tree (b)


SUM = 0 
PARALLEL DO I = 1, 1000000 
ATOMIC SUM = SUM + X(I) 

END DO 
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Parallel Computation Tree

What sort of code 
should we write 
to get a computation 
tree of this shape? 

What sort of code 
would we like 
to write? 
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Finding the Length of a LISP List 

Recursive: 

(define length (list) 

(cond ((null list) 0) 

(else (+ 1 (length (rest list)))))) 
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Append Lists (1)
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Append Lists (2)
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Append Lists (3)
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Append Lists (4)
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Defining Lists Using car cdr cons 
(define (first x) 

(cond ((null? x) ’()) 

(else (car x)))) 

(define (rest x) 

(cond ((null? x) ’()) 

(else (cdr x)))) 

(define (append xs ys) 

(cond ((null? xs) ys) 

(else (cons (car xs) (append (cdr xs) ys))))) 

(define (addleft a xs) (cons a xs)) 

(define (addright xs a) 

(cond ((null? xs) (list a)) 

(else (cons (car xs) (addright (cdr xs) a))))) 
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Defining Lists Using car cdr cons 
(define (first x) ;Constant time 

(cond ((null? x) ’()) 

(else (car x)))) 

(define (rest x) ;Constant time 

(cond ((null? x) ’()) 

(else (cdr x)))) 

(define (append xs ys) ;Linear in (length xs) 

(cond ((null? xs) ys) 

(else (cons (car xs) (append (cdr xs) ys))))) 

(define (addleft a xs) (cons a xs)) ;Constant time 

(define (addright xs a) ;Linear in (length xs) 

(cond ((null? xs) (list a)) 

(else (cons (car xs) (addright (cdr xs) a))))) 
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map reduce mapreduce 
(map (λ (x) (* x x)) ’(1 2 3)) => (1 4 9) 

(reduce + 0 ’(1 4 9)) => 14 

(mapreduce (λ (x) (* x x)) + 0 ’(1 2 3)) => 14 

(define (map f xs) ;Linear in (length xs) 

(cond ((null? xs) ’()) 

(else (cons (f (car xs)) (map f (cdr xs)))))) 

(define (reduce g id xs) ;Linear in (length xs) 

(cond ((null? xs) id) 

(else (g (car xs) (reduce g id (cdr xs)))))) 

(define (mapreduce f g id xs)  ;Linear in (length xs) 

(cond ((null? xs) id) 

(else (g (f (car xs)) (mapreduce f g id  (cdr xs)))))) 
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length filter 
(define (length xs) ;Linear in (length xs) 

(mapreduce (λ (q) 1) + 0 xs)) 

(define (filter p xs) ;Linear in (length xs) 

(cond ((null? xs) ’())
 

((p (car xs)) (cons p (filter p (cdr xs))))
 

(else (filter p (cdr x)))))
 

(define (filter p xs) ;Linear in (length xs)?? 

(apply append 

(map (λ (x) (if (p x) (list x) ’())) xs))) 

(define (filter p xs) ;Linear in (length xs)!! 

(mapreduce (λ (x) (if (p x) (list x) ’())) 

append ’() xs)) 
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reverse 
(define (reverse xs) ;QUADRATIC in (length xs) 

(cond ((null? xs) ’()) 

(else (addright (reverse (cdr xs)) (car xs))))) 

(define (revappend xs ys) ;Linear in (length xs) 

(cond ((null? xs) ys) 

(else (revappend (cdr xs) (cons (car xs) ys))))) 

(define (reverse xs) ;Linear in (length xs) 

(revappend xs ’())) 
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Linear versus Multiway Decomposition 
•	 Linearly linked lists are inherently sequential.
 

> Compare Peano arithmetic: 5 = ((((0+1)+1)+1)+1)+1
 
> Binary arithmetic is much more efficient than unary!
 

•	 We need a multiway decomposition paradigm: 

length [ ] = 0 
length [a] = 1 
length (a++b) = (length a) + (length b) 

This is just a summation problem: adding up a bunch of 1’s! 
(More generally: a bunch of 0’s and 1’s.) 
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Defining Lists Using 
item list split conc (1) 

(define (first xs) ;Depth of left path 

(cond ((null? xs) ’())
 

((singleton? xs) (item xs))
 

(else (split xs (λ (ys zs) (first ys))))))
 

(define (rest xs) ;Depth of left path 

(cond ((null? xs) ’())
 

((singleton? xs) ’())
 

(else (split xs (λ (ys zs) (append (rest ys) zs))))))
 

(define (append xs ys) ;Constant time 

(cond ((null? xs) ys)
 

((null? ys) xs)
 

(else (conc xs ys))))
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Defining Lists Using 
item list split conc (2) 

(define (first xs) ;Depth of left path 

(cond ((null? xs) ’()) 

((singleton? xs) (item xs)) 

(else (split xs (λ (ys zs) (first ys)))))) 

(define (rest xs) ;Depth of left path 

(cond ((null? xs) ’()) 

((singleton? xs) ’()) 

(else (split xs (λ (ys zs) (append (rest ys) zs)))))) 

(define (append xs ys) ;??? 

(cond ((null? xs) ys) 

((null? ys) xs) 

(else (rebalance (conc xs ys))))) 
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Defining Lists Using 
item list split conc (3) 

(define (addleft a xs) 

(cond ((null? xs) (list a)) 

((singleton? xs) (append (list a) xs)) 

(else (split xs (λ (ys zs) (append (addleft a ys) zs)))))) 

(define (addright xs a) 

(cond ((null? xs) (list a)) 

((singleton? xs) (append xs (list a))) 

(else (split xs (λ (ys zs) (append ys (addright a zs))))))) 

(define (addleft a xs) (append (list a) xs)) 

(define (addright xs a) (append xs (list a))) 
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Parallel map reduce mapreduce 
(define (mapreduce f g id xs)  ;Logarithmic in (length xs)?? 

(cond ((null? xs) id)
 

((singleton? xs) (f (item xs)))
 

(else (split xs (λ (ys zs)
 

(g (mapreduce f g id ys) 

(mapreduce f g id zs))))))) 

(define (map f xs) 

(mapreduce (λ (x) (list (f x))) append ’() xs)) 

(define (reduce g id xs) 

(mapreduce (λ (x) x) g id xs)) 
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length filter reverse 
(define (length xs) ;Logarithmic in (length xs)?? 

(mapreduce (λ (q) 1) + 0 xs)) 

(define (filter p xs) ;Logarithmic in (length xs)?? 

(mapreduce (λ (x) (if (p x) (list x) ’())) 

append ’() xs)) 

(define (reverse xs) ;Logarithmic in (length xs)?? 

(mapreduce list (λ (yx zs) (append zs ys)) ’() xs)) 
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Exercise: Write Mergesort and Quicksort 
in This Binary-split Style 

•	 Mergesort: structural induction on input
 
> Cheaply split input in half
 
> Recursively sort the two halves
 
> Carefully merge the two sorted sublists (tricky)
 

•	 Quicksort: structural induction on output
 
> Carefully split input into lower and upper halves (tricky)
 
> Recursively sort the two halves
 
> Cheaply append the two sorted sublists
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A Modest Example: Filter (1)
 

sequentialFilter�E�(a: List�E�, p: E → Boolean): List�E� = do 
result : List�E� := 〈 〉  
for k ← seq(0 # a.size()) do 

if p(ak) then result := result .addRight(ak) end 
end 
result
 

end
 

Example of use:
 
So what language
 


odd(x: Z) = ((x MOD 2) = 0)
 
is this? Fortress. 

sequentialFilter(〈 1, 4, 7, 2, 5 〉, odd) 
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A Modest Example: Filter (2) 

recursiveFilter�E�(a: List�E�, p: E → Boolean): List�E� = 
if a.isEmpty() then 〈 〉  
else 

(first , rest) =  a.extractLeft().get() 
rest ′ = recursiveFilter(rest , p) 
if p(first) then rest ′ .addLeft(first) else rest ′ end 

end 
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A Modest Example: Filter (3) 

parallelFilter�E�(a: List�E�, p: E → Boolean): List�E� =
 
if |a| = 0  then 〈 〉 
  
elif | | = 1  then
a


(first , ) =  a.extractLeft().get()
 
if p(first) then a else 〈 〉  end
 

else
 
(x, y) =  a.split()
 
parallelFilter(x, p) ‖ parallelFilter(y, p)
 

end 
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A Modest Example: Filter (4) 

reductionFilter�E�(a: List�E�, p: E → Boolean): List�E� = 
‖ (if p(x) then 〈 x 〉 else 〈 〉  end) 

x←a 

〈 x | x ← a, p(x) 〉 

Oh, yes: 
� 

xi 
i←1:1000000 
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Splitting a String into Words (1) 

•	 Given: a string 

•	 Result: List of strings, the words separated by spaces
 
> Words must be nonempty
 
> Words may be separated by more than one space
 
> String may or may not begin (or end) with spaces
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Splitting a String into Words (2) 
•	 Tests: 

println words(“This is a sample”)
 
println words(“ Here is another sample ”)
 
println words(“JustOneWord”)
 
println words(“ ”)
 
println words(“”)
 

•	 Expected output:
 
〈 This, is, a, sample 〉
 
〈 Here, is, another, sample 〉
 
〈 JustOneWord 〉
 
〈 〉 
  
〈 〉 
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Splitting a String into Words (3) 
words(s: String) = do
 

result : List�String� := 〈 〉 
  

word : String := “”
 

for k ← seq(0 # length(s)) do
 

char = substring(s, k, k + 1)  

if (char = “ ”)  then
 

if (word =� “”) then result := result ‖ 〈word 〉 end
 

word := “”
 

else 

word := word ‖ char 

end
 

end
 

if (word =� “”) then result := result ‖ 〈word 〉 end
 

result
 

end 
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Splitting a String into Words (4a)
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Splitting a String into Words (4b)
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Splitting a String into Words (4c)
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Splitting a String into Words (4d)
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Splitting a String into Words (4e)
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Splitting a String into Words (4f)
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Splitting a String into Words (4g)
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Splitting a String into Words (4h)
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Splitting a String into Words (5)


maybeWord(s: String): List�String� =
 
if s = “”  then 〈 〉  else 〈 s 〉 end
 

trait WordState
 
extends {Associative�WordState, ⊕� }
 
comprises {Chunk, Segment }
 

opr ⊕(self, other : WordState): WordState
 
end
 

44 



Splitting a String into Words (6)


object Chunk(s: String) extends WordState
 
opr ⊕(self, other : Chunk): WordState =
 

Chunk(s ‖ other .s)
 
opr ⊕(self, other : Segment): WordState =
 

Segment(s ‖ other .l, other .A, other .r)
 
end 
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Splitting a String into Words (7) 

object Segment(l: String, A: List�String�, r: String) 
extends WordState 

opr ⊕(self, other : Chunk): WordState = 
Segment(l, A, r ‖ other .s) 

opr ⊕(self, other : Segment): WordState = 
Segment(l, A ‖ maybeWord(r ‖ other .l) ‖ other .A, other .r) 

end 
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Splitting a String into Words (8) 

processChar(c: String): WordState =
 
if (c = “ ”)  then Segment(“”, 〈 〉, “”)
 
else Chunk(c)
 
end
 

words(s: String) = do
 
g = 

� 
processChar(substring(s, k, k + 1))
 

k←0#length(s) 

typecase g of 
Chunk ⇒ maybeWord(g.s) 
Segment ⇒ maybeWord(g.l) ‖ g.A ‖maybeWord(g.r) 

end
 
end
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Splitting a String into Words (9) 

(∗	The mechanics of BIG OPLUS ∗) 
opr BIG ⊕ �T �(g : (Reduction�WordState�,
 

T → WordState)
 
→ WordState): WordState =
 

g(GlomReduction, identity�WordState�)
 

object	 GlomReduction extends Reduction�WordState�
 
getter toString() = “GlomReduction”
 
empty(): WordState = Chunk(“”)
 
join(a: WordState, b: WordState): WordState = a ⊕ b
 

end 
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What’s Going On Here? 

Instead of linear induction
 

with one base case (empty),
 

we have multiway induction
 

with two base cases (empty and unit). 

Why are these two base cases important? 
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Representation of Abstract Collections
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Algebraic Properties of ♦
 

Associative Commutative Idempotent
 

no no no binary trees 

no no yes weird 

no yes no “mobiles” 

no yes yes weird 

yes no no lists (arrays) 

yes no yes weird 

yes yes no multisets (bags)


yes yes yes sets 

The “Boom hierarchy” 
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Associativity
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Catamorphism: Summation
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Computation: Summation
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Catamorphism: Lists
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Computation: Lists
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Representation: Lists
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Catamorphism: Loops


for i ← seq(1 : 4) do print i end 

for i ← 1 : 4 do print i end 

Generators can modify the catamorphism 
and so control the parallelism. 58 
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To Summarize: A Big Idea 
•	 Loops and summations and list constructors are alike! 

for i ← 1 : 1000000 do xi := xi
2 end 

2xi
 
i←1:1000000
 

〈 x2 | i ← 1 : 1000000 〉i 

> Generate an abstract collection
 
> The body computes a function of each item
 
> Combine the results (or just synchronize)
 

•	 Whether to be sequential or parallel is a separable question
 
> That’s why they are especially good abstractions!
 
> Make the decision on the fly, to use available resources
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Another Big Idea 
•	 Formulate a sequential loop as successive applications of
 

state transformation functions fi
 

•	 Find an efficient way to compute and represent compositions
 
of such functions (this step requires ingenuity)
 

•	 Instead of computing 
s := s0; for i ← seq(1 : 1000000) do s := fi(s) end ,
 
compute s := ( ◦ fi) s0
 

i←1:1000000 

•	 Because function composition is associative, the latter has a
 
parallel strategy
 

•	 In the “words in a string” problem, each character can be
 
regarded as defining a state transformation function
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Splitting a String into Words (3, again) 
words(s: String) = do
 

result : List�String� := 〈 〉 
  

word : String := “”
 

for k ← seq(0 # length(s)) do
 

char = substring(s, k, k + 1)  

if (char = “ ”)  then
 

if (word =� “”) then result := result ‖ 〈word 〉 end
 

word := “”
 

else 

word := word ‖ char 

end
 

end
 

if (word =� “”) then result := result ‖ 〈word 〉 end
 

result
 

end 
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MapReduce Is a Big Deal! 

•	 Associative combining operators are a VERY BIG DEAL!
 
> Google MapReduce requires that combining operators
 

also be commutative.
 
> There are ways around that.
 

•	 Inventing new combining operators is a very, very big deal.
 
> Creative catamorphisms!
 
> We need programming languages that encourage this.
 
> We need assistance in proving them associative.
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We Need a New Mindset 
•	 DO loops are so 1950s! (Literally: Fortran is now 50 years old.) 

•	 So are linear linked lists! (Literally: Lisp is now 50 years old.) 

•	 JavaTM-style iterators are so last millennium! 

•	 Even arrays are suspect! 

•	 As soon as you say “first, SUM = 0” you are hosed.
 
Accumulators are BAD.
 

•	 If you say, “process subproblems in order,” you lose. 

•	 The great tricks of the sequential past DON’T WORK. 

•	 The programming idioms that have become second nature to 
us as everyday tools DON’T WORK. 

63 



The Parallel Future 
•	 We need new strategies for problem decomposition.
 

> Data structure design/object relationships
 
> Algorithmic organization
 
> Don’t split a problem into “the first” and “the rest.”
 
> Do split a problem into roughly equal pieces.
 

Then figure out how to combine general subsolutions. 
> Often this makes combining the results a bit harder. 

•	 We need programming languages and runtime
 
implementations that support parallel strategies
 
and hybrid sequential/parallel strategies.
 

•	 We must learn to manage new space-time tradeoffs. 
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Conclusion 
•	 A program organized according to linear problem
 

decomposition principles can be really hard to parallelize.
 

•	 A program organized according to parallel problem
 
decomposition principles is easily run either in parallel or
 
sequentially, according to available resources.
 

•	 The new strategy has costs and overheads. They will be
 
reduced over time but will not disappear.
 

•	 In a world of parallel computers of wildly varying sizes,
 
this is our only hope for program portability in the future.
 

•	 Better language design can encourage better parallel
 
programming.
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