
MIT OpenCourseWare
http://ocw.mit.edu

6.945 Adventures in Advanced Symbolic Programming
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Copyright ©c 2008, 2009 Sun Microsystems, Inc. (”Sun”). All
rights are reserved by Sun except as expressly stated as follows.
Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted, provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on
servers, or to redistribute to lists, requires prior specific written
permission of Sun.

1

With Multicore, a Profound Shift

•	 Parallelism is here, now, and in our faces

> Academics have been studying it for 50 years

> Serious commercial offerings for 25 years

> But now it’s in desktops and laptops

•	 Specialized expertise for science codes and databases and

networking

•	 But soon general practitioners must go parallel

•	 An opportunity to make parallelism easier for everyone

2

This Talk Is about Performance

The bag of programming tricks

that has served us so well

for the last 50 years

is

the wrong way to think

going forward and

must be thrown out.

3

Why?
•	 Good sequential code minimizes total number of operations.

> Clever tricks to reuse previously computed results.

> Good parallel code often performs redundant operations

to reduce communication.

•	 Good sequential algorithms minimize space usage.

> Clever tricks to reuse storage.

> Good parallel code often requires extra space to permit

temporal decoupling.

•	 Sequential idioms stress linear problem decomposition.

> Process one thing at a time and accumulate results.

> Good parallel code usually requires multiway problem

decomposition and multiway aggregation of results.
4

Let’s Add a Bunch of Numbers

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

5

Let’s Add a Bunch of Numbers

SUM = 0 // Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

This is already bad!
Clever compilers have to undo this.

6

� �

What Does a Mathematician Say?

1000000

xi or maybe just x

i=1

Compare Fortran 90 SUM(X).

What, not how.

No commitment yet as to strategy. This is good.

7

Sequential Computation Tree

SUM = 0
DO I = 1, 1000000

SUM = SUM + X(I)
END DO

8

Atomic Update Computation Tree (a)

SUM = 0
PARALLEL DO I = 1, 1000000
SUM = SUM + X(I)

END DO

9

Atomic Update Computation Tree (b)

SUM = 0
PARALLEL DO I = 1, 1000000
ATOMIC SUM = SUM + X(I)

END DO

10

Parallel Computation Tree

What sort of code
should we write
to get a computation
tree of this shape?

What sort of code
would we like
to write?

11

Finding the Length of a LISP List

Recursive:

(define length (list)

(cond ((null list) 0)

(else (+ 1 (length (rest list))))))

12

Append Lists (1)

13

Append Lists (2)

14

Append Lists (3)

15

Append Lists (4)

16

Defining Lists Using car cdr cons
(define (first x)

(cond ((null? x) ’())

(else (car x))))

(define (rest x)

(cond ((null? x) ’())

(else (cdr x))))

(define (append xs ys)

(cond ((null? xs) ys)

(else (cons (car xs) (append (cdr xs) ys)))))

(define (addleft a xs) (cons a xs))

(define (addright xs a)

(cond ((null? xs) (list a))

(else (cons (car xs) (addright (cdr xs) a)))))

17

Defining Lists Using car cdr cons
(define (first x) ;Constant time

(cond ((null? x) ’())

(else (car x))))

(define (rest x) ;Constant time

(cond ((null? x) ’())

(else (cdr x))))

(define (append xs ys) ;Linear in (length xs)

(cond ((null? xs) ys)

(else (cons (car xs) (append (cdr xs) ys)))))

(define (addleft a xs) (cons a xs)) ;Constant time

(define (addright xs a) ;Linear in (length xs)

(cond ((null? xs) (list a))

(else (cons (car xs) (addright (cdr xs) a)))))

18

map reduce mapreduce
(map (λ (x) (* x x)) ’(1 2 3)) => (1 4 9)

(reduce + 0 ’(1 4 9)) => 14

(mapreduce (λ (x) (* x x)) + 0 ’(1 2 3)) => 14

(define (map f xs) ;Linear in (length xs)

(cond ((null? xs) ’())

(else (cons (f (car xs)) (map f (cdr xs))))))

(define (reduce g id xs) ;Linear in (length xs)

(cond ((null? xs) id)

(else (g (car xs) (reduce g id (cdr xs))))))

(define (mapreduce f g id xs) ;Linear in (length xs)

(cond ((null? xs) id)

(else (g (f (car xs)) (mapreduce f g id (cdr xs))))))

19

length filter
(define (length xs) ;Linear in (length xs)

(mapreduce (λ (q) 1) + 0 xs))

(define (filter p xs) ;Linear in (length xs)

(cond ((null? xs) ’())

((p (car xs)) (cons p (filter p (cdr xs))))

(else (filter p (cdr x)))))

(define (filter p xs) ;Linear in (length xs)??

(apply append

(map (λ (x) (if (p x) (list x) ’())) xs)))

(define (filter p xs) ;Linear in (length xs)!!

(mapreduce (λ (x) (if (p x) (list x) ’()))

append ’() xs))

20

reverse
(define (reverse xs) ;QUADRATIC in (length xs)

(cond ((null? xs) ’())

(else (addright (reverse (cdr xs)) (car xs)))))

(define (revappend xs ys) ;Linear in (length xs)

(cond ((null? xs) ys)

(else (revappend (cdr xs) (cons (car xs) ys)))))

(define (reverse xs) ;Linear in (length xs)

(revappend xs ’()))

21

Linear versus Multiway Decomposition
•	 Linearly linked lists are inherently sequential.

> Compare Peano arithmetic: 5 = ((((0+1)+1)+1)+1)+1

> Binary arithmetic is much more efficient than unary!

•	 We need a multiway decomposition paradigm:

length [] = 0
length [a] = 1
length (a++b) = (length a) + (length b)

This is just a summation problem: adding up a bunch of 1’s!
(More generally: a bunch of 0’s and 1’s.)

22

Defining Lists Using
item list split conc (1)

(define (first xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) (item xs))

(else (split xs (λ (ys zs) (first ys))))))

(define (rest xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) ’())

(else (split xs (λ (ys zs) (append (rest ys) zs))))))

(define (append xs ys) ;Constant time

(cond ((null? xs) ys)

((null? ys) xs)

(else (conc xs ys))))

23

Defining Lists Using
item list split conc (2)

(define (first xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) (item xs))

(else (split xs (λ (ys zs) (first ys))))))

(define (rest xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) ’())

(else (split xs (λ (ys zs) (append (rest ys) zs))))))

(define (append xs ys) ;???

(cond ((null? xs) ys)

((null? ys) xs)

(else (rebalance (conc xs ys)))))

24

Defining Lists Using
item list split conc (3)

(define (addleft a xs)

(cond ((null? xs) (list a))

((singleton? xs) (append (list a) xs))

(else (split xs (λ (ys zs) (append (addleft a ys) zs))))))

(define (addright xs a)

(cond ((null? xs) (list a))

((singleton? xs) (append xs (list a)))

(else (split xs (λ (ys zs) (append ys (addright a zs)))))))

(define (addleft a xs) (append (list a) xs))

(define (addright xs a) (append xs (list a)))

25

Parallel map reduce mapreduce
(define (mapreduce f g id xs) ;Logarithmic in (length xs)??

(cond ((null? xs) id)

((singleton? xs) (f (item xs)))

(else (split xs (λ (ys zs)

(g (mapreduce f g id ys)

(mapreduce f g id zs)))))))

(define (map f xs)

(mapreduce (λ (x) (list (f x))) append ’() xs))

(define (reduce g id xs)

(mapreduce (λ (x) x) g id xs))

26

length filter reverse
(define (length xs) ;Logarithmic in (length xs)??

(mapreduce (λ (q) 1) + 0 xs))

(define (filter p xs) ;Logarithmic in (length xs)??

(mapreduce (λ (x) (if (p x) (list x) ’()))

append ’() xs))

(define (reverse xs) ;Logarithmic in (length xs)??

(mapreduce list (λ (yx zs) (append zs ys)) ’() xs))

27

Exercise: Write Mergesort and Quicksort
in This Binary-split Style

•	 Mergesort: structural induction on input

> Cheaply split input in half

> Recursively sort the two halves

> Carefully merge the two sorted sublists (tricky)

•	 Quicksort: structural induction on output

> Carefully split input into lower and upper halves (tricky)

> Recursively sort the two halves

> Cheaply append the two sorted sublists

28

�

A Modest Example: Filter (1)

sequentialFilter�E�(a: List�E�, p: E → Boolean): List�E� = do
result : List�E� := 〈 〉
for k ← seq(0 # a.size()) do

if p(ak) then result := result .addRight(ak) end
end
result

end

Example of use:

So what language

odd(x: Z) = ((x MOD 2) = 0)

is this? Fortress.

sequentialFilter(〈 1, 4, 7, 2, 5 〉, odd)
29

A Modest Example: Filter (2)

recursiveFilter�E�(a: List�E�, p: E → Boolean): List�E� =
if a.isEmpty() then 〈 〉
else

(first , rest) = a.extractLeft().get()
rest ′ = recursiveFilter(rest , p)
if p(first) then rest ′ .addLeft(first) else rest ′ end

end

30

A Modest Example: Filter (3)

parallelFilter�E�(a: List�E�, p: E → Boolean): List�E� =

if |a| = 0 then 〈 〉

elif | | = 1 then
a

(first ,) = a.extractLeft().get()

if p(first) then a else 〈 〉 end

else

(x, y) = a.split()

parallelFilter(x, p) ‖ parallelFilter(y, p)

end

31

A Modest Example: Filter (4)

reductionFilter�E�(a: List�E�, p: E → Boolean): List�E� =
‖ (if p(x) then 〈 x 〉 else 〈 〉 end)

x←a

〈 x | x ← a, p(x) 〉

Oh, yes:
�

xi
i←1:1000000

32

Splitting a String into Words (1)

•	 Given: a string

•	 Result: List of strings, the words separated by spaces

> Words must be nonempty

> Words may be separated by more than one space

> String may or may not begin (or end) with spaces

33

Splitting a String into Words (2)
•	 Tests:

println words(“This is a sample”)

println words(“ Here is another sample ”)

println words(“JustOneWord”)

println words(“ ”)

println words(“”)

•	 Expected output:

〈 This, is, a, sample 〉

〈 Here, is, another, sample 〉

〈 JustOneWord 〉

〈 〉

〈 〉

34

Splitting a String into Words (3)
words(s: String) = do

result : List�String� := 〈 〉

word : String := “”

for k ← seq(0 # length(s)) do

char = substring(s, k, k + 1)

if (char = “ ”) then

if (word =� “”) then result := result ‖ 〈word 〉 end

word := “”

else

word := word ‖ char

end

end

if (word =� “”) then result := result ‖ 〈word 〉 end

result

end

35

Splitting a String into Words (4a)

36

Splitting a String into Words (4b)

37

Splitting a String into Words (4c)

38

Splitting a String into Words (4d)

39

Splitting a String into Words (4e)

40

Splitting a String into Words (4f)

41

Splitting a String into Words (4g)

42

Splitting a String into Words (4h)

43

Splitting a String into Words (5)

maybeWord(s: String): List�String� =

if s = “” then 〈 〉 else 〈 s 〉 end

trait WordState

extends {Associative�WordState, ⊕� }

comprises {Chunk, Segment }

opr ⊕(self, other : WordState): WordState

end

44

Splitting a String into Words (6)

object Chunk(s: String) extends WordState

opr ⊕(self, other : Chunk): WordState =

Chunk(s ‖ other .s)

opr ⊕(self, other : Segment): WordState =

Segment(s ‖ other .l, other .A, other .r)

end

45

Splitting a String into Words (7)

object Segment(l: String, A: List�String�, r: String)
extends WordState

opr ⊕(self, other : Chunk): WordState =
Segment(l, A, r ‖ other .s)

opr ⊕(self, other : Segment): WordState =
Segment(l, A ‖ maybeWord(r ‖ other .l) ‖ other .A, other .r)

end

46

Splitting a String into Words (8)

processChar(c: String): WordState =

if (c = “ ”) then Segment(“”, 〈 〉, “”)

else Chunk(c)

end

words(s: String) = do

g =

�
processChar(substring(s, k, k + 1))

k←0#length(s)

typecase g of
Chunk ⇒ maybeWord(g.s)
Segment ⇒ maybeWord(g.l) ‖ g.A ‖maybeWord(g.r)

end

end

47

Splitting a String into Words (9)

(∗	The mechanics of BIG OPLUS ∗)
opr BIG ⊕ �T �(g : (Reduction�WordState�,

T → WordState)

→ WordState): WordState =

g(GlomReduction, identity�WordState�)

object	 GlomReduction extends Reduction�WordState�

getter toString() = “GlomReduction”

empty(): WordState = Chunk(“”)

join(a: WordState, b: WordState): WordState = a ⊕ b

end

48

What’s Going On Here?

Instead of linear induction

with one base case (empty),

we have multiway induction

with two base cases (empty and unit).

Why are these two base cases important?

49

Representation of Abstract Collections

50

Algebraic Properties of ♦

Associative Commutative Idempotent

no no no binary trees

no no yes weird

no yes no “mobiles”

no yes yes weird

yes no no lists (arrays)

yes no yes weird

yes yes no multisets (bags)

yes yes yes sets

The “Boom hierarchy”
51

Associativity

52

Catamorphism: Summation

53

Computation: Summation

54

Catamorphism: Lists

55

Computation: Lists

56

Representation: Lists

57

Catamorphism: Loops

for i ← seq(1 : 4) do print i end

for i ← 1 : 4 do print i end

Generators can modify the catamorphism
and so control the parallelism. 58

�

To Summarize: A Big Idea
•	 Loops and summations and list constructors are alike!

for i ← 1 : 1000000 do xi := xi
2 end

2xi

i←1:1000000

〈 x2 | i ← 1 : 1000000 〉i

> Generate an abstract collection

> The body computes a function of each item

> Combine the results (or just synchronize)

•	 Whether to be sequential or parallel is a separable question

> That’s why they are especially good abstractions!

> Make the decision on the fly, to use available resources

59

Another Big Idea
•	 Formulate a sequential loop as successive applications of

state transformation functions fi

•	 Find an efficient way to compute and represent compositions

of such functions (this step requires ingenuity)

•	 Instead of computing
s := s0; for i ← seq(1 : 1000000) do s := fi(s) end ,

compute s := (◦ fi) s0

i←1:1000000

•	 Because function composition is associative, the latter has a

parallel strategy

•	 In the “words in a string” problem, each character can be

regarded as defining a state transformation function

60

Splitting a String into Words (3, again)
words(s: String) = do

result : List�String� := 〈 〉

word : String := “”

for k ← seq(0 # length(s)) do

char = substring(s, k, k + 1)

if (char = “ ”) then

if (word =� “”) then result := result ‖ 〈word 〉 end

word := “”

else

word := word ‖ char

end

end

if (word =� “”) then result := result ‖ 〈word 〉 end

result

end

61

MapReduce Is a Big Deal!

•	 Associative combining operators are a VERY BIG DEAL!

> Google MapReduce requires that combining operators

also be commutative.

> There are ways around that.

•	 Inventing new combining operators is a very, very big deal.

> Creative catamorphisms!

> We need programming languages that encourage this.

> We need assistance in proving them associative.

62

We Need a New Mindset
•	 DO loops are so 1950s! (Literally: Fortran is now 50 years old.)

•	 So are linear linked lists! (Literally: Lisp is now 50 years old.)

•	 JavaTM-style iterators are so last millennium!

•	 Even arrays are suspect!

•	 As soon as you say “first, SUM = 0” you are hosed.

Accumulators are BAD.

•	 If you say, “process subproblems in order,” you lose.

•	 The great tricks of the sequential past DON’T WORK.

•	 The programming idioms that have become second nature to
us as everyday tools DON’T WORK.

63

The Parallel Future
•	 We need new strategies for problem decomposition.

> Data structure design/object relationships

> Algorithmic organization

> Don’t split a problem into “the first” and “the rest.”

> Do split a problem into roughly equal pieces.

Then figure out how to combine general subsolutions.
> Often this makes combining the results a bit harder.

•	 We need programming languages and runtime

implementations that support parallel strategies

and hybrid sequential/parallel strategies.

•	 We must learn to manage new space-time tradeoffs.

64

Conclusion
•	 A program organized according to linear problem

decomposition principles can be really hard to parallelize.

•	 A program organized according to parallel problem

decomposition principles is easily run either in parallel or

sequentially, according to available resources.

•	 The new strategy has costs and overheads. They will be

reduced over time but will not disappear.

•	 In a world of parallel computers of wildly varying sizes,

this is our only hope for program portability in the future.

•	 Better language design can encourage better parallel

programming.

65

