
MIT OpenCourseWare
http://ocw.mit.edu

6.945 Adventures in Advanced Symbolic Programming
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

ps.txt Fri Mar 13 18:03:04 2009 1

 MASSACHVSETTS INSTITVTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer Science

 6.945 Spring 2009

 Problem Set 7

 Issued: Wed. 18 Mar. 2009 Due: Wed. 1 Apr. 2009

Readings:

 SICP second edition

 Section 4.3:

 Variations on a Scheme--Nondeterministic Programming

 Online MIT/GNU Scheme Documentation,

 Section 2.3: Dynamic Binding - fluid-let

 Section 12.4: Continuations - call-with-current-continuation &

 within-continuation

 There is an entire bibliography of stuff about this on:

 http://library.readscheme.org/page6.html

Code: load.scm, funco.scm, ambsch.scm, stack-queue, examples.scm (attached)

 Generate and Test

We normally think of generate and test, and its extreme use in search,

as an AI technique. However, it can be viewed as a way of making

systems that are modular and independently evolvable, as in the

exploratory behavior of biological systems. Consider a very simple

example: suppose we have to solve a quadratic equation. There are two

roots to a quadratic. We could return both, and assume that the user

of the solution knows how to deal with that, or we could return one

and hope for the best. (The canonical sqrt routine returns the

positive square root, even though there are two square roots!) The

disadvantage of returning both solutions is that the receiver of that

result must know to try the computation with both and either reject

one, for good reason, or return both results of the computation, which

may itself have made some choices. The disadvantage of returning only

one solution is that it may not be the right one for the receiver’s

purpose.

A better way to handle this is to build a backtracking mechanism into

the infrastructure. The square-root procedure should return one of

the roots, with the option to change its mind and return the other one

if the first choice is determined to be inappropriate by the receiver.

It is, and should be, the receiver’s responsibility to determine if

the ingredients to its computation are appropriate and acceptable.

This may itself require a complex computation, involving choices whose

consequences may not be apparent without further computation, so the

process is recursive. Of course, this gets us into potentially deadly

exponential searches through all possible assignments to all the

choices that have been made in the program. As usual, modular

flexibility can be dangerous.

ps.txt Fri Mar 13 18:03:04 2009 2

 Linguistically Implicit Search

We have talked about the extent to which a search strategy can be

separated from the other parts of a program, so that one can

interchange search strategies without greatly modifying the program.

In this problem set we take the further step of pushing search and

search control into the infrastructure that is supported by the

language, without explicitly building search into our program at all.

This idea has considerable history. In 1961 John McCarthy had the

idea of a nondeterministic operator AMB, which could be useful for

representing nondeterministic automata. In 1967 Bob Floyd had the

idea of building backtracking search into a computer language as part

of the linguistic glue. In 1969 Carl Hewitt proposed a language,

PLANNER, that embodied these ideas. In the early 1970s Colmerauer,

Kowalski, Roussel, and Warren developed Prolog, a language based on a

limited form of first-order predicate calculus, which made

backtracking search implicit.

In this problem set we will learn how to implement and how to use

linguistic nondeterminism. Before proceeding we recommend that you

carefully reread section 4.3, up to but not including 4.3.3 of SICP

(pages 412--426). This material introduces AMB and shows how it can

be used to formalize some classes of search problems. Section 4.3.3

describes how to compile a language that includes AMB into a

combinator structure. We touched on this in Problem Set 4. In this

problem set we will see a different way to implement AMB, worked out

in the file "ambsch.scm", which allows ordinary Scheme programs to

freely intermix with code that includes nondeterministic search.

But before we try to understand the implementation, it is useful to

review what can be done with AMB. If you load "ambsch.scm" into MIT

Scheme you can run examples such as the ones in the comments at the

end of the "ambsch.scm" file, and you can solve the following puzzle.

Problem 7.1: Warmup (From SICP Exercise 4.43, p.420)

Formalize and solve the following puzzle with AMB:

 Mary Ann Moore’s father has a yacht and so has each of his

 four friends: Colonel Downing, Mr. Hall, Sir Barnacle Hood,

 and Dr. Parker. Each of the five also has one daughter and

 each has named his yacht after a daughter of one of the

 others. Sir Barnacle’s yacht is the Gabrielle, Mr. Moore

 owns the Lorna; Mr. Hall the Rosalind. The Melissa, owned

 by Colonel Downing, is named after Sir Barnacle’s daughter.

 Gabrielle’s father owns the yacht that is named after Dr.

 Parker’s daughter. Who is Lorna’s father?

You must use AMB to specify the alternatives that are possible for

each choice. Also determine how many solutions there are if we are

not told that Mary Ann’s last name is Moore.

ps.txt Fri Mar 13 18:03:04 2009 3

 Fun with Current Continuation

Before we can understand how the ambsch mechanism works we have to get

deeper into continuations. Continuations are one of the most powerful

(and the most dangerous) tools of a programmer. Scheme provides the

ability for a programmer to get the continuation of an expression.

But most other languages do not support the use of first-class

continuations. (Some other languages that do have first-class

continuations include SML, Ruby, and Smalltalk.)

Whenever a Scheme expression is evaluated, a continuation exists that

wants the result of the expression. The continuation represents an

entire (default) future for the computation. If the expression is

evaluated at top level, for example, the continuation will take the

result, print it on the screen, prompt for the next input, evaluate

it, and so on forever. Most of the time the continuation includes

actions specified by user code, as in a continuation that will take

the result, multiply it by the value stored in a local variable, add

seven, and give the answer to the top-level continuation to be

printed. Normally these ubiquitous continuations are hidden behind the

scenes and programmers don’t think much about them. On the rare

occasions that you may need to deal explicitly with continuations,

call-with-current-continuation lets you do so by creating a procedure

that acts just like the current continuation.

See the on-line MIT/GNU Scheme Reference Manual, Section 12.4, for a

detailed description of CALL-WITH-CURRENT-CONTINUATION.

Explicit continuations may be powerful and sometimes useful, but they

are rarely necessary. One common usage case is for non-local exits.

Another is for resuming a suspended computation for backtracking. Yet

another is coroutining (which we will explore in a later problem set).

 Continuations as Non-Local Exits

Consider the following simple example of a non-local exit continuation

(adapted from the MIT/GNU Scheme Reference Manual [Section 12.4]):

 (call-with-current-continuation

 (lambda (exit)

 (for-each (lambda (x)

 (if (negative? x)
 (exit x)))

 ’(54 0 37 -3 245 -19)) ; **
 #t))

 ;Value: -3

Because Scheme’s for-each procedure walks the list in left-to-right

order, the first negative element encountered is -3, which is

immediately returned. Had the list contained no negative numbers, the

result would have been #t (since the body of the lambda form is a

sequence of two expressions, the for-each expression followed by #t).

ps.txt Fri Mar 13 18:03:04 2009 4

In a larger context, this might appear within some other form, like

the following definition (explained below) in file "funco.scm":

 (define (funco:first-negative list-of-numbers)

 (call-with-current-continuation

 (lambda (k_exit)

 (or (call-with-current-continuation

 (lambda (k_shortcut)

 (for-each (lambda (n)

 (cond ((not (number? n))

 (pp ‘(not-a-number: ,n))

 (k_exit #f))

 ((negative? n)

 (k_shortcut n))

 (else

 ’:keep-looking)))

 list-of-numbers)

 #f ;; Fall-through sentinel: no negatives found.

))

 ’:no-negatives-found))))

 #|

 (funco:first-negative ’(54 0 37 -3 245 -19))

 ;Value: -3

 (funco:first-negative ’(54 0 37 3 245 19))

 ;Value: :no-negatives-found

 (funco:first-negative ’(54 0 37 no 245 boo))

 (not-a-number: no)

 ;Value: #f

 |#

This demonstrates nested continuations, where the outermost k_exit

continuation exits the entire call to funco:first-negative while the

inner k_shortcut continuation exits only to the enclosing disjunction

(or), then continues from there.

In short, if a continuation captured by call-with-current-continuation

is ever invoked (with value V), then the computation will continue by

returning V as the value of the call to call-with-current-continuation

and resuming execution normally from there. [This is a bit tricky so

look at the code above and re-read this last sentence a couple times

until it makes sense... and please suggest alternative wording that

might be less quixotically obtuse.]

ps.txt Fri Mar 13 18:03:04 2009 5

Problem 7.2:

A. Define a simple procedure, snark-hunt, that takes a tree of symbols

 as argument and recursively descends it looking for the symbol

 ’snark at any leaf. It should immediately halt and return #t if

 one is found; #f otherwise. Use call-with-current-continuation.

 If it helps, feel free to assume that all input trees will be valid

 non-null lists of tree-or-symbol elements, or whatever other data

 representation you find convenient.

 E.g.,

 (snark-hunt ’(((a b c) d (e f)) g (((snark . "oops") h) (i . j))))

 ;Value: #t

 Note that the dotted pairs in the above violate (intentionally) the

 assumption that the input is comprised solely of proper lists of

 tree-or-symbol elements, so overruns may well result in errors.

B. How might you verify that it exits immediately rather than silently

 returning through multiple return levels? Define a new procedure,

 snark-hunt/instrumented, to demonstrate this. [Hint: setting an

 exit status flag then signaling an error on wayward return paths

 might work if placed carefully, but simply tracing via pp may be

 easier. Whatever quick and dirty hack that works will do. The

 goal here is to build your intuition about continuations, not to

 ship product-quality code. Briefly explain your strategy.]

ps.txt Fri Mar 13 18:03:04 2009 6

 Continuations for Backtracking

The preceding was somewhat simplistic since the continuations captured

were used only for non-local exits. Specifically, they were not used

for backtracking. Moreover, they were never re-entered once invoked.

Now consider the following slightly more interesting scenario:

 (define *k_re-funco*)

 (define funco)

 #|

 (begin

 (set! funco (+ 2 (call-with-current-continuation

 (lambda (k_re-funco)

 (set! *k_re-funco* k_re-funco)

 3))))

 ’:ok)

 ;Value: :ok

 funco

 ;Value: 5

 (*k_re-funco* 4)

 ;Value: :ok

 funco

 ;Value: 6

 (*k_re-funco* 5)

 ;Value: :ok

 funco

 ;Value: 7

 |#

Note carefully how re-entering this captured continuation returns

control to the point before the add and, therefore, before assigning

variable funco and returning the symbol ’:ok. This is why invoking it

always returns the symbol ’:ok, not the value passed to the exported

continuation being re-entered (obviously) and not the new value to

which that variable is re-assigned nor its old value nor unspecific.

This and the other examples in file "funco.scm" (attached) demonstrate

how to re-enter a captured continuation to proceed from intermediate

return points. This mechanism is used for backtracking in "ambsch.scm".

ps.txt Fri Mar 13 18:03:04 2009 7

 Continuations and Dynamic Contexts

We’ve already seen a few instances of dynamic binding via FLUID-LET in

lecture. Although assignment violates referential transparency, fluid

binding can be handy for locally overriding a free variable’s value.

For example, consider the following code fragment:

 (define *trace?* #f)

 (define (foo x)

 (set! *trace?* #t)

 (let ((result (bar x))) ;; bar may pp status when *trace?* set

 (set! *trace?* #f)

 result))

This works as expected only so long as bar does not capture and export

a continuation that can be used to re-enter bar’s body. Moreover, if

bar exits by invoking a continuation that bypasses the normal return

mechanism that LET-binds result, the *trace?* flag may not be reset on

the way out. Worse, this presumes *trace?* is always #f on entry.

To handle side-effects like this in the face of (possibly hidden)

first-class continuations, a new dynamic binding form named FLUID-LET

is provided that assigns (rather than LET-binds) variables on entry

and reassigns them to their previous values upon exit, whether exiting

via the normal return mechanism or through some captured continuation.

Thus, FLUID-LET allows parameterization of subsystems with a condition

that is in effect over a controlled time interval (an extent) rather

than over a lexically apparent textual region of code (a scope).

The FLUID-LET special form is documented in the on-line MIT/GNU Scheme

Reference Manual, Section 2.3 Dynamic Binding (q.v.).

In this case, for example, the expected behavior can be achieved by

rewriting the above code fragment as:

 (define (foo x)

 (fluid-let ((*trace?* #t))

 (bar x)))

This mechanism is used in a few places in "ambsch.scm" to allow

arbitrary nesting of depth-first verse breadth-first scheduling.

It is also used by the mildly hackish amb-collect-values device.

ps.txt Fri Mar 13 18:03:04 2009 8

 Dynamic Contexts and Within-Continuation

The story gets really interesting when we define a thunk (a procedure

of no arguments) at some control point in order to delay evaluation of

its body, but we wish to invoke it in the dynamic context of its

definition’s control point, not the dynamic context in flight at its

eventual point of call.

For example, consider the following slightly contrived code fragment:

 (define (funco:test-k-thunk k-thunk)

 (let ((*foo* 2)) ;----------------------.

 (define (foo-thunk) *foo*) ; *foo* is 2 out here. :

 (call-with-current-continuation ; :

 (lambda (k) ; :

 (fluid-let ((*foo* 3)) ;---------------------. :

 (k-thunk k foo-thunk) ; *foo* is 3 in here. : :

) ;---------------------’ :

)) ; *foo* is 2 out here. :

)) ;----------------------’

 #|

 (funco:test-k-thunk (lambda (k thunk)

 (k (thunk))))

 ;Value: 3

 (funco:test-k-thunk (lambda (k thunk)

 (within-continuation k thunk)))

 ;Value: 2

 |#

The WITHIN-CONTINUATION procedure is documented in the MIT/GNU Scheme

Reference Manual [Section 12.4]). In short, it unrolls the dynamic

context to that of the continuation, k, before invoking the thunk, the

result of which is then passed to the continuation, k.

In "ambsch.scm", WITHIN-CONTINUATION is used to ensure that sibling

AMB arguments are called in the dynamic context in which they were

introduced, not the dynamic context in which they are eventually

invoked. This not only ensures that each AMB alternative backtracks

to appropriate nested search strategies, it also avoids unnecessary

accumulation of control state during the invocation of alternatives.

ps.txt Fri Mar 13 18:03:04 2009 9

 From Continuations to AMB

Now that we have had experience with explicit expression continuations

we can begin to understand the code in "ambsch.scm". The heart of the

backtracker is amb-list, which takes a sequence of sibling thunks,

each representing an alternative value for the amb expression. The

thunks were produced by the amb macro, which syntactically transforms

amb expressions into amb-list expressions, as follows:

 (amb <e1> ... <en>) ==>

 (amb-list (list (lambda () <e1>) ... (lambda () <en>)))

The search schedule maintains an agenda of thunks that proceed the

computation when it is necessary for an amb expression to return with

a new alternative value. For a particular amb expression these thunks

are constructed so as to return from that amb expression, using the

continuation, k, captured at the entrance to its enclosing amb-list.

The within-continuation expression, which is almost equivalent to the

call (k (alternative)), prevents the capture of pieces of the control

stack that are unnecessary for continuing the computation correctly.

Ambl first adds the returners for its alternative values to the search

schedule and then yields control to the first pending returner.

 (define (amb-list alternatives)

 (if (null? alternatives)

 (set! *number-of-calls-to-fail*

 (+ *number-of-calls-to-fail* 1)))

 (call-with-current-continuation

 (lambda (k)

 (add-to-search-schedule

 (map (lambda (alternative)

 (lambda ()

 (within-continuation k alternative)))

 alternatives))

 (yield))))

 (define (yield)

 (if (stack&queue-empty? *search-schedule*)

 (*top-level* #f)

 ((pop! *search-schedule*))))

Note that procedure add-to-search-schedule is fluid bound either to

add-to-depth-first-search-schedule (the default behavior) or else to

add-to-breadth-first-search-schedule. See "ambsch.scm" for details.

ps.txt Fri Mar 13 18:03:04 2009 10

 Breadth -v- Depth

Consider the following experiment:

 (define (a-pythagorean-triple-between low high)

 (let ((i (an-integer-between low high)))

 (let ((j (an-integer-between i high)))

 (let ((k (an-integer-between j high)))

 (set! count (+ count 1)) ; **

 (require (= (+ (* i i) (* j j)) (* k k)))

 (list i j k)))))

 (define count 0)

 #|

 (begin

 (init-amb)

 (set! count 0)

 (with-breadth-first-schedule

 (lambda () (pp (a-pythagorean-triple-between 10 20)))))

 (12 16 20)

 count

 ;Value: 246

 number-of-calls-to-fail

 ;Value: 282

 (begin

 (init-amb)

 (set! count 0)

 (with-depth-first-schedule

 (lambda () (pp (a-pythagorean-triple-between 10 20)))))

 (12 16 20)

 count

 ;Value: 156

 number-of-calls-to-fail

 ;Value: 182

 |#

Problem 7.3:

Explain the different counts between depth-first and breadth-first

(in rough terms, not the exact counts).

Also, where are the extra calls to fail coming from?

Considering that the breadth-first search does more work, why is the

a-pythagorean-triple-from search [AX 3.f in "ambsch.scm"] not usable

under the depth-first search strategy?

ps.txt Fri Mar 13 18:03:04 2009 11

 Less Deterministic Non-Determinism

Eva Lu Ator chides that a criticism one might make of our AMB

implementation is that it’s not as non-deterministic as one might

sometimes like. Specifically, given a list of alternatives in an AMB

form, we always choose the leftmost alternative first then the second

leftmost and so on in left-to-right order.

She suggests that one might wish to override this choice, say, with

right-to-left alternation or even in random order. Specifically,

she’d like something like:

 (with-left-to-right-alternation <thunk>)

 (with-right-to-left-alternation <thunk>)

 (with-random-order-alternation <thunk>)

She’s quick to point out that this choice is independent of the choice

of depth-first or breadth-first (or whatever else) search order one

might choose.

Problem 7.5:

A. Under what circumstances might you want an unordered (random) AMB?

 Craft a specific short example to use as a test case below.

B. Implement these three alternatives and give an example use of each.

 For simplicity and uniformity, model your code after that for

 with-depth-first-schedule, add-to-depth-first-search-schedule, etc.

 [Hint: Feel free to use the native MIT Scheme RANDOM procedure.]

ps.txt Fri Mar 13 18:03:04 2009 12

 Neurological Origami

Consider the following brain twister:

 (define moby-brain-twister-test

 (lambda ()

 (let ((x) (y) (z))

 (set! x (amb 1 2 3))

 (pp (list x))

 (set! y (amb ’a ’b))

 (pp (list x y))

 (set! z (amb #t #f))

 (pp (list x y z))

 (amb))))

 #|

 (with-breadth-first-schedule moby-brain-twister-test)

 (1)

 (2)

 (3)

 (3 a)

 (3 b)

 (3 a)

 (3 b)

 (3 a)

 (3 b)

 (3 b #t)

 (3 b #f)

 (3 b #t)

 (3 b #f)

 (3 b #t)

 (3 b #f)

 (3 b #t)

 (3 b #f)

 (3 b #t)

 (3 b #f)

 (3 b #t)

 (3 b #f)

 ;Value: #f

 |#

Contrast this trace with the breadth-first elementary backtrack test

AMB example from "ambsch.scm" [viz., AX 1.b].

Problem 7.6:

Why does this weird thing happen?

The explanation is very simple, but this took us many hours to

understand.

[Hint: Look at (with-depth-first-schedule moby-brain-twister-test).]

ps.txt Fri Mar 13 18:03:04 2009 13

 A Potential Project Topic

Problem 7.7: (optional!)

In the ‘‘Continuations and Dynamic Contexts’’ discussion section

above, it was claimed that the breadth-first and depth-first search

strategies can be arbitrarily nested within AMB forms.

Does the nesting of depth-first and breadth-first scheduling work

correctly as currently implemented in "ambsch.scm"? Specifically,

design an experiment that exposes the bug (if there is one) or that

demonstrates anecdotally that it does work correctly (if it does).

Explain your rationale.

This involves crafting a couple experiments that distinguish between

depth-first and breadth-first search strategies then composing them in

interesting ways to demonstrate local control over nested searches.

Identifying a natural class of problems for which this flexibility is

useful--- not just hacked together to prove a point--- might be a fine

topic for an independent project. Don’t spend too much time on it yet.

ps.txt Fri Mar 13 18:03:04 2009 14

;;;; File: funco.scm

;;;; Fun with Continuations

#| Adapted from MIT/GNU Scheme Reference Manual [Section 12.4]:

(call-with-current-continuation

 (lambda (exit)

 (for-each (lambda (x)

 #t))
;Value: -3

(if (negative? x)
 (exit x)))

 ’(54 0 37 -3 245 -19)) ; **

|#

;;; Continuations as Non-Local Exits

(define (funco:first-negative list-of-numbers)

 (call-with-current-continuation

 (lambda (k_exit)

 (or (call-with-current-continuation

 (lambda (k_shortcut)

 (for-each (lambda (n)

 (cond ((not (number? n))

 (pp ‘(not-a-number: ,n))

 (k_exit #f))

 ((negative? n)

 (k_shortcut n))

 (else

 ’:keep-looking)))

 list-of-numbers)

 #f ;; Fall-through sentinel: no negatives found.

))

 ’:no-negatives-found))))

#|

(funco:first-negative ’(54 0 37 -3 245 -19))

;Value: -3

(funco:first-negative ’(54 0 37 3 245 19))

;Value: :no-negatives-found

(funco:first-negative ’(54 0 37 no 245 boo))

(not-a-number: no)

;Value: #f

|#

ps.txt Fri Mar 13 18:03:04 2009 15

;;; Continuations for Proceeding (Suspend/Resume Backtracking)

(define (funco:first-negative-n-proceed list-of-numbers) ;;; **

 (call-with-current-continuation

 (lambda (k_exit)

 (or (call-with-current-continuation

 (lambda (k_shortcut)

 (for-each (lambda (n)

 (pp ;;; **

 (call-with-current-continuation ;;; **

 (lambda (k_proceed) ;;; **

 (cond ((not (number? n))

 (pp ‘(not-a-number: ,n))

 (k_exit

 (cons n k_proceed))) ;;; **

 ((negative? n)

 (k_shortcut

 (cons n k_proceed))) ;;; **

 (else

 ’:keep-looking)))

))) ;;; **

 list-of-numbers)

 #f ;; Fall-through sentinel: no negatives found.

))

 ’:no-negatives-found))))

(define (funco:first-negative-n-proceed-more? smore) (pair? smore))

(define (funco:first-negative-n-proceed-more/found smore) (car smore))

(define (funco:first-negative-n-proceed-more/k smore) (cdr smore))

(define (funco:first-negative-n-proceed-more/next smore)

 ((funco:first-negative-n-proceed-more/k smore)

 (funco:first-negative-n-proceed-more/found smore)))

ps.txt Fri Mar 13 18:03:04 2009 16

#|

;;; -----------­

(define funco:first-of-two

 (funco:first-negative-n-proceed ’(54 0 37 -3 245 -19)))

:keep-looking

:keep-looking

:keep-looking

;Value: funco:first-of-two

(funco:first-negative-n-proceed-more? funco:first-of-two)

;Value: #t

(funco:first-negative-n-proceed-more/found funco:first-of-two)

;Value: -3

(funco:first-negative-n-proceed-more/next funco:first-of-two)

-3

:keep-looking

;Value: funco:first-of-two

(funco:first-negative-n-proceed-more? funco:first-of-two)

;Value: #t

(funco:first-negative-n-proceed-more/found funco:first-of-two)

;Value: -19

(funco:first-negative-n-proceed-more/next funco:first-of-two)

-19

;Value: funco:first-of-two

(funco:first-negative-n-proceed-more? funco:first-of-two)

;Value: #f

funco:first-of-two

;Value: :no-negatives-found

|#

ps.txt Fri Mar 13 18:03:04 2009 17

#|

;;; ---­

(define funco:nada

 (funco:first-negative-n-proceed ’(54 0 37 3 245 19)))

:keep-looking

:keep-looking

:keep-looking

:keep-looking

:keep-looking

:keep-looking

;Value: funco:nada

(funco:first-negative-n-proceed-more? funco:nada)

;Value: #f

funco:nada

;Value: :no-negatives-found

|#

#|

;;; ---­

(define funco:nans

 (funco:first-negative-n-proceed ’(54 0 37 no 245 boo)))

:keep-looking

:keep-looking

:keep-looking

(not-a-number: no)

;Value: funco:nans

(funco:first-negative-n-proceed-more? funco:nans)

;Value: #t

(funco:first-negative-n-proceed-more/found funco:nans)

;Value: no

(funco:first-negative-n-proceed-more/next funco:nans)

no

:keep-looking

(not-a-number: boo)

;Value: funco:nans

(funco:first-negative-n-proceed-more? funco:nans)

;Value: #t

(funco:first-negative-n-proceed-more/next funco:nans)

boo

;Value: funco:nans

(funco:first-negative-n-proceed-more? funco:nans)

;Value: #f

funco:nans

;Value: :no-negatives-found

|#

ps.txt Fri Mar 13 18:03:04 2009 18

;;; Continuations for Backtracking (Re-entrant 1st-Class Continuations)

(define *k_re-funco*)

(define funco)

#|

(begin

 (set! funco (+ 2 (call-with-current-continuation

 (lambda (k_re-funco)

 (set! *k_re-funco* k_re-funco)

 3))))

 ’:ok)

;Value: :ok

funco

;Value: 5

(*k_re-funco* 4)

;Value: :ok

funco

;Value: 6

(*k_re-funco* 5)

;Value: :ok

funco

;Value: 7

|#

ps.txt Fri Mar 13 18:03:04 2009 19

;;; Dynamic Contexts and Within-Continuation

(define (funco:test-k-thunk k-thunk)

 (let ((*foo* 2)) ;----------------------.

 (define (foo-thunk) *foo*) ; *foo* is 2 out here. :

 (call-with-current-continuation ; :

 (lambda (k) ; :

 (fluid-let ((*foo* 3)) ;---------------------. :

 (k-thunk k foo-thunk) ; *foo* is 3 in here. : :

) ;---------------------’ :

)) ; *foo* is 2 out here. :

)) ;----------------------’

#|

(funco:test-k-thunk (lambda (k thunk)

 (k (thunk))))

;Value: 3

(funco:test-k-thunk (lambda (k thunk)

 (within-continuation k thunk)))

;Value: 2

|#

ps.txt Fri Mar 13 18:03:04 2009 20

;;;; File: ambsch.scm

;;;; Extension of Scheme for amb

;;; amb is the ambiguous operator of McCarthy.

;;; (load "stack-queue.scm")

(define-syntax amb

 (sc-macro-transformer

 (lambda (form uenv)

 ‘(amb-list

 (list ,@(map (lambda (arg)

 ‘(lambda ()

 ,(close-syntax arg uenv)))

 (cdr form)))))))

(define *number-of-calls-to-fail* 0) ;for metering.

(define (amb-list alternatives)

 (if (null? alternatives)

 (set! *number-of-calls-to-fail*

 (+ *number-of-calls-to-fail* 1)))

 (call-with-current-continuation

 (lambda (k)

 (add-to-search-schedule

 (map (lambda (alternative)

 (lambda ()

 (within-continuation k alternative)))

 alternatives))

 (yield))))

;;; amb-set! is an assignment operator

;;; that gets undone on backtracking.

(define-syntax amb-set!

 (sc-macro-transformer

 (lambda (form uenv)

 (compile-amb-set (cadr form) (caddr form) uenv))))

(define (compile-amb-set var val-expr uenv)

 (let ((var (close-syntax var uenv))

 (val (close-syntax val-expr uenv)))

 ‘(let ((old-value ,var))

 (effect-wrapper

 (lambda ()

 (set! ,var ,val))

 (lambda ()

 (set! ,var old-value))))))

;;; A general wrapper for undoable effects

(define (effect-wrapper doer undoer)

 (force-next

 (lambda () (undoer) (yield)))

 (doer))

ps.txt Fri Mar 13 18:03:04 2009 21

;;; Alternative search strategy wrappers

(define (with-depth-first-schedule thunk)

 (call-with-current-continuation

 (lambda (k)

 (fluid-let ((add-to-search-schedule

 add-to-depth-first-search-schedule)

 (*search-schedule* (empty-search-schedule))

 (*top-level* k))

 (thunk)))))

(define (with-breadth-first-schedule thunk)

 (call-with-current-continuation

 (lambda (k)

 (fluid-let ((add-to-search-schedule

 add-to-breadth-first-search-schedule)

 (*search-schedule* (empty-search-schedule))

 (*top-level* k))

 (thunk)))))

;;; Representation of the search schedule

(define *search-schedule*)

(define (empty-search-schedule)

 (make-stack&queue))

(define (yield)

 (if (stack&queue-empty? *search-schedule*)

 (*top-level* #f)

 ((pop! *search-schedule*))))

(define (force-next thunk)

 (push! *search-schedule* thunk))

;;; Alternative search strategies

(define (add-to-depth-first-search-schedule alternatives)

 (for-each (lambda (alternative)

 (push! *search-schedule* alternative))

 (reverse alternatives)))

(define (add-to-breadth-first-search-schedule alternatives)

 (for-each (lambda (alternative)

 (add-to-end! *search-schedule* alternative))

 alternatives))

ps.txt Fri Mar 13 18:03:04 2009 22

;;; For incremental interactive experiments from REPL.

(define (init-amb)

 (set! *search-schedule* (empty-search-schedule))

 (set! *number-of-calls-to-fail* 0)

 ’done)

(define add-to-search-schedule ;; Default is depth 1st

 add-to-depth-first-search-schedule)

(define *top-level*

 (lambda (ignore)

 (display ";No more alternatives\n")

 (abort->top-level unspecific)))

ps.txt Fri Mar 13 18:03:04 2009 23

;;; AX 1 - Elementary backtrack test.

(define elementary-backtrack-test

 (lambda ()

 (let ((x (amb 1 2 3)))

 (pp (list x))

 (let ((y (amb ’a ’b)))

 (pp (list x y))

 (let ((z (amb #t #f)))

 (pp (list x y z)))))

 (amb)))

#|

;; AX 1.d - Elementary backtrack test. [Depth First]

(with-depth-first-schedule elementary-backtrack-test)

(1)

(1 a)

(1 a #t)

(1 a #f)

(1 b)

(1 b #t)

(1 b #f)

(2)

(2 a)

(2 a #t)

(2 a #f)

(2 b)

(2 b #t)

(2 b #f)

(3)

(3 a)

(3 a #t)

(3 a #f)

(3 b)

(3 b #t)

(3 b #f)

;Value: #f

ps.txt Fri Mar 13 18:03:04 2009 24

;; AX 1.b - Elementary backtrack test. [Breadth First]

(with-breadth-first-schedule elementary-backtrack-test)

(1)

(2)

(3)

(1 a)

(1 b)

(2 a)

(2 b)

(3 a)

(3 b)

(1 a #t)

(1 a #f)

(1 b #t)

(1 b #f)

(2 a #t)

(2 a #f)

(2 b #t)

(2 b #f)

(3 a #t)

(3 a #f)

(3 b #t)

(3 b #f)

;Value: #f

|#

ps.txt Fri Mar 13 18:03:04 2009 25

;;; AX 2 - Testing undoable assignment.

(define testing-undoable-assignment

 (lambda ()

 (let ((x (amb 1 2 3)) (y 0) (z 0))

 (pp ‘(before ,x ,y ,z))

 (amb-set! y x)

 (pp ‘(after ,x ,y ,z))

 (amb-set! z (amb 3.14 2.718))

 (pp ‘(zset ,x ,y ,z))

 (amb-set! x (+ y z))

 (pp ‘(xset ,x ,y ,z))

 (amb))))

#|

;;; AX 2.d - Testing undoable assignment. [Depth First]

(with-depth-first-schedule testing-undoable-assignment)

(before 1 0 0)

(after 1 1 0)

(zset 1 1 3.14)

(xset 4.140000000000001 1 3.14)

(zset 1 1 2.718)

(xset 3.718 1 2.718)

(before 2 0 0)

(after 2 2 0)

(zset 2 2 3.14)

(xset 5.140000000000001 2 3.14)

(zset 2 2 2.718)

(xset 4.718 2 2.718)

(before 3 0 0)

(after 3 3 0)

(zset 3 3 3.14)

(xset 6.140000000000001 3 3.14)

(zset 3 3 2.718)

(xset 5.718 3 2.718)

;Value: #f

|#

ps.txt Fri Mar 13 18:03:04 2009 26

;;; AX 3 - Pythagorean triples

;; In breadth-first we get useful results here.

;; None from depth-first.

;; AX 3.f - A Pythagorean triple from...

(define (a-pythagorean-triple-from low)

 (let ((i (an-integer-from low)))

 (let ((j (an-integer-from i)))

 (let ((k (an-integer-from j)))

 (require (= (+ (* i i) (* j j)) (* k k)))

 (list i j k)))))

(define (require p)

 (if (not p) (amb)))

(define (an-integer-from low)

 (amb low (an-integer-from (+ low 1))))

#|

(with-breadth-first-schedule

 (lambda ()

 (pp (a-pythagorean-triple-from 1))

 (amb)))

(3 4 5)

(6 8 10)

(5 12 13)

(9 12 15)

(8 15 17)

(12 16 20)

(7 24 25)

(15 20 25)

(10 24 26)

(20 21 29)

(18 24 30)

(16 30 34)

(21 28 35)

(12 35 37)

(15 36 39)

(24 32 40)

(9 40 41)

(27 36 45)

(14 48 50)

(30 40 50)

(24 45 51)

(20 48 52)

(28 45 53)

(33 44 55)

(40 42 58)

(36 48 60)

(11 60 61)

(16 63 65)

;Quit!

|#

ps.txt Fri Mar 13 18:03:04 2009 27

;; AX 3.b - A Pythagorean triple between...

;; For example, for controlling search:

(define (a-pythagorean-triple-between low high)

 (let ((i (an-integer-between low high)))

 (let ((j (an-integer-between i high)))

 (let ((k (an-integer-between j high)))

 (require (= (+ (* i i) (* j j)) (* k k)))

 (list i j k)))))

(define (an-integer-between low high)

 (require (<= low high))

 (amb low

 (an-integer-between (+ low 1) high)))

;; A useful device:

(define (amb-collect-values result-thunk #!optional limit)

 (call-with-current-continuation

 (lambda (k)

 (let ((values ’()) (count 0))

 (fluid-let ((*top-level* (lambda (ignore) (k values)))

 (*search-schedule* (empty-search-schedule)))

 (let ((value (result-thunk)))

 (set! values (cons value values))

 (set! count (+ count 1))

 (if (and (not (default-object? limit))

 (>= count limit))

 (k values))

 (amb)))))))

#|

(with-depth-first-schedule

 (lambda ()

 (let ((mid (amb-collect-values

 (lambda ()

 (a-pythagorean-triple-between 1 20))

 ;; I want only 3, and

 ;; I don’t want to backtrack into this.

 3)))

 (pp (list (a-pythagorean-triple-between 1 10)

 mid

 (a-pythagorean-triple-between 10 30)))

 (amb))))

((3 4 5) ((6 8 10) (5 12 13) (3 4 5)) (10 24 26))

((6 8 10) ((6 8 10) (5 12 13) (3 4 5)) (10 24 26))

((3 4 5) ((6 8 10) (5 12 13) (3 4 5)) (12 16 20))

((6 8 10) ((6 8 10) (5 12 13) (3 4 5)) (12 16 20))

((3 4 5) ((6 8 10) (5 12 13) (3 4 5)) (15 20 25))

((6 8 10) ((6 8 10) (5 12 13) (3 4 5)) (15 20 25))

((3 4 5) ((6 8 10) (5 12 13) (3 4 5)) (18 24 30))

((6 8 10) ((6 8 10) (5 12 13) (3 4 5)) (18 24 30))

((3 4 5) ((6 8 10) (5 12 13) (3 4 5)) (20 21 29))

((6 8 10) ((6 8 10) (5 12 13) (3 4 5)) (20 21 29))

;Value: #f

|#

ps.txt Fri Mar 13 18:03:04 2009 28

;;;; File: examples.scm

;;; SICP Section 4.3.2 : Logic Puzzles

;;;

;;; Baker, Cooper, Fletcher, Miller, and Smith live on

;;; different floors of a building that has only five

;;; floors. Baker does not live on the top floor.

;;; Cooper does not live on the bottom floor. Fletcher

;;; does not live on either the top or the bottom

;;; floor. Miller lives on a higher floor than does

;;; Cooper. Smith does not live on a floor adjacent to

;;; Fletcher’s. Fletcher does not live on a floor

;;; adjacent to Cooper’s. Where does everyone live?

;;; (From Dinesman, 1968)

(define (multiple-dwelling)

 (let ((baker (amb 1 2 3 4 5))

 (cooper (amb 1 2 3 4 5))

 (fletcher (amb 1 2 3 4 5))

 (miller (amb 1 2 3 4 5))

 (smith (amb 1 2 3 4 5)))

 (require

 (distinct?

 (list baker cooper fletcher miller smith)))

 (require (not (= baker 5)))

 (require (not (= cooper 1)))

 (require (not (= fletcher 5)))

 (require (not (= fletcher 1)))

 (require (> miller cooper))

 (require

 (not (= (abs (- smith fletcher)) 1)))

 (require

 (not (= (abs (- fletcher cooper)) 1)))

 (list (list ’baker baker)

 (list ’cooper cooper)

 (list ’fletcher fletcher)

 (list ’miller miller)

 (list ’smith smith))))

(define (distinct? items)

 (cond ((null? items) #t)

 ((null? (cdr items)) #t)

 ((member (car items) (cdr items)) #f)

 (else (distinct? (cdr items)))))

#|

(init-amb)

;Value: done

(with-depth-first-schedule multiple-dwelling)

;Value: ((baker 3) (cooper 2) (fletcher 4) (miller 5) (smith 1))

(amb)

;No more alternatives

|#

ps.txt Fri Mar 13 18:03:04 2009 29

;;; From SICP Section 4.3.2

;;; Parsing natural language

(define (parse input)

 (amb-set! *unparsed* input)

 (let ((sent (parse-sentence)))

 (require (null? *unparsed*))

 sent))

(define *unparsed* ’())

(define (parse-sentence)

 (let* ((np (parse-noun-phrase))

 (verb (parse-verb-phrase)))

 (list ’sentence np verb)))

(define (parse-noun-phrase)

 (define (maybe-extend noun-phrase)

 (amb noun-phrase

 (maybe-extend

 (list ’noun-phrase

 noun-phrase

 (parse-prepositional-phrase)))))

 (maybe-extend (parse-s-noun-phrase)))

(define (parse-verb-phrase)

 (define (maybe-extend verb-phrase)

 (amb verb-phrase

 (maybe-extend

 (list ’verb-phrase

 verb-phrase

 (parse-prepositional-phrase)))))

 (maybe-extend (parse-word verbs)))

ps.txt Fri Mar 13 18:03:04 2009
 30

(define (parse-s-noun-phrase)

 (let* ((article (parse-word articles))

 (noun (parse-word nouns)))

 (list ’s-noun-phrase article noun)))

(define (parse-prepositional-phrase)

 (let* ((preposition

 (parse-word prepositions))

 (np (parse-noun-phrase)))

 (list ’prep-phrase preposition np)))

(define (parse-word word-list)

 (require (not (null? *unparsed*)))

 (require (memq (car *unparsed*)

 (cdr word-list)))

 (let ((found-word (car *unparsed*)))

 (amb-set! *unparsed* (cdr *unparsed*))

 (list (car word-list) found-word)))

(define nouns

 ’(noun student professor cat class))

(define verbs

 ’(verb studies lectures eats sleeps))

(define articles

 ’(article the a))

(define prepositions

 ’(prep for to in by with))

ps.txt Fri Mar 13 18:03:04 2009 31

#|

(init-amb)

;Value: done

(pp

 (parse

 ’(the student with the cat sleeps in the class)))

(sentence

 (noun-phrase

 (s-noun-phrase (article the) (noun student))

 (prep-phrase (prep with)

 (s-noun-phrase (article the)

 (noun cat))))

 (verb-phrase

 (verb sleeps)

 (prep-phrase (prep in)

 (s-noun-phrase (article the)

 (noun class)))))

;Unspecified return value

(amb)

;No more alternatives

|#

ps.txt Fri Mar 13 18:03:04 2009 32

#|

(init-amb)

;Value: done

(pp

 (parse

 ’(the professor lectures

 to the student with the cat)))

(sentence

 (s-noun-phrase (article the) (noun professor))

 (verb-phrase

 (verb-phrase

 (verb lectures)

 (prep-phrase (prep to)

 (s-noun-phrase (article the)

 (noun student))))

 (prep-phrase (prep with)

 (s-noun-phrase (article the)

 (noun cat)))))

;Unspecified return value

(amb)

(sentence

 (s-noun-phrase (article the) (noun professor))

 (verb-phrase

 (verb lectures)

 (prep-phrase

 (prep to)

 (noun-phrase

 (s-noun-phrase (article the)

 (noun student))

 (prep-phrase (prep with)

 (s-noun-phrase (article the)

 (noun cat)))))))

;Unspecified return value

(amb)

;No more alternatives

|#

33 ps.txt Fri Mar 13 18:03:04 2009

;;;; File: load.scm

;; Fun with Continuations

(load "funco")

;; AMB Scheme extensions

(load "ambsch")

;; AMB Examples from SICP

(load "examples")

’:have-fun!

