
MIT OpenCourseWare
http://ocw.mit.edu

6.945 Adventures in Advanced Symbolic Programming
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

ps.txt Tue Feb 10 23:03:54 2009 1

 MASSACHVSETTS INSTITVTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer Science

 6.945 Spring 2009

 Problem Set 4

 Issued: Wed. 25 Feb. 2009 Due: Wed. 4 Mar. 2009

Reading:

 SICP, From Chapter 4: section 4.1.7--4.2 (from PS03)

 section 4.3; (pp. 412--437)

Code: utils.scm, ghelper.scm, syntax.scm, rtdata.scm,

 load-analyze.scm, analyze.scm, repl.scm

 load-amb.scm, analyze-amb.scm repl-amb.scm

 multiple-dwelling.scm

 Heavy Evaluator Hacking

In this problem set we build interpreters in a different direction.

We start with the essential EVAL/APPLY interpreter, written as an

analyzer of the syntax into a compiler of compositions of execution

procedures -- a small combinator language. We will warm up by making

modifications to this evaluator.

Next, we will change the evaluator to include AMB expressions. To add

AMB, the execution procedures will all have a different shape: in

addition to the environment, each will take two "continuation

procedures" SUCCEED and FAIL. In general, when a computation comes up

with a value it will invoke SUCCEED with the proposed value and a

complaint department which, if invoked, will try to produce an

alternate value. If a computation cannot come up with a value, it

will invoke the complaint department passed to it in the FAIL

continuation.

An important lesson to be learned here is how to use continuation

procedures to partially escape the expression structure of the

language. By construction, a functional expression has a unique

value. However, in the AMB system an expression may be ambiguous as

to its value... Think about how we arrange that to make sense!

Separating Syntactic Analysis from Execution

 (Compiling to Combinators)

It is important to read SICP section 4.1.7 carefully here. When you

load "load-analyze.scm" you will get an evaluator similar to the one

described in this section.

ps.txt Tue Feb 10 23:03:54 2009 2

Problem 4.1: Warmup

It is often valuable to have procedures that can take an indefinite

number of arguments. The addition and multiplication procedures in

Scheme are examples of such procedures. Traditionally, a user may

specify such a procedure in a definition by making the bound-variable

specification of a lambda expression a symbol rather than a list of

formal parameters. That symbol is expected to be bound to the list of

arguments supplied. For example, to make a procedure that takes

several arguments and returns a list of the squares of the arguments

supplied, one may write:

(lambda x (map square x))

or

(define (ss . x) (map square x))

and then

(ss 1 2 3 4) ==> (1 4 9 16)

Modify the analyzing interpreter to allow this construction.

Hint: you do not need to change the code involving DEFINE or LAMBDA

in syntax.scm! This is entirely a change in analyze.scm

Demonstrate that your modification allows this kind of procedure, and

that it does not cause other troubles.

Problem 4.2: Infix notation

Many people like infix notation for small arithmetic expressions. It

is not hard to write a special form, (INFIX <infix-string>), that

takes a character string, parses it as an infix expression with the

usual precedence rules, and reduces it to Lisp. Note that to do this

you really don’t have to delve into the combinator target mechanism of

the evaluator, since this can be accomplished as a "macro" in the same

way that COND and LET are implemented (see syntax.scm).

So, for example, we should be able to write the program:

(define (quadratic a b c)

 (let ((discriminant (infix "b**2-4*a*c")))

 (infix "(-b+sqrt(discriminant))/(2*a)")))

Hint: Do not try to parse numbers! That is hard -- let Scheme do it

for you: use string->number (see MIT Scheme documentation). Just

pass the substring that specifies the number to string->number to get

the numerical value.

ps.txt Tue Feb 10 23:03:54 2009 3

Write the INFIX special form, install it in the evaluator, and

demonstrate that it works.

Please! Unless you have lots of time to burn, do not write a complete

infix parser for some entire language, like Python (easy) or Java

(hard)! We just want parsing of simple arithmetic expressions.

AMB and Nondeterministic Programming

Now comes the real fun part of this problem set! Please read section

4.3 of SICP carefully before starting this part. This interpreter

requires a change in the interface structure of the combinators that

code compiles into, so it is quite different. Of course, our system

differs from the one in SICP in that it is implemented with generic

extension capability. The loader for the interpreter extended for AMB

is "load-analyze.scm".

Problem 4.3: Warmup: Programming with AMB

Run the multiple-dwelling program (to get a feeling for how to use the

system).

Do exercises 4.38, 4.39, and 4.40 (p. 419) from SICP.

Note: we supply the multiple-dwelling.scm program so you need not type

it in.

Problem 4.4:

Modify the AMB interpreter to record and report the number of

alternatives examined in exploring a search space. What is this

number for the simple multiple-dwelling program? For your best

improvement of it from your work in exercise 4.40, above.

