
6.897: Selected Topics in Cryptography

Lectures 7 and 8

Lecturer: Ran Canetti

Highlights of past lectures

•	 Presented a basic framework for analyzing the
security of protocols for multi-party function
evaluation.

•	 Presented the notion of modular composition.

•	 Stated and proved the non-concurrent.

composition theorem
•	 Showed how to capture ZK and PoK within this

framework.
•	 Used the composition theorem to analyze a

basic ZK protocol.
•	 Mentioned some limitations of the notion…

Lectures 7 and 8

The UC Framework and composition

theorem

• Motivation for a new framework
• The UC framework:

– The basic system model
– The real-life model for protocol execution
– Ideal functionalities and the ideal process

• Alternative formalizations
• Universal composition:

– The hybrid model
– The composition operation
– The UC theorem
– Interpretations
– Proof

• Some ideal functionalities

P1

P3
P4

P2

F

P1

P3
P4

P2
S A

Protocol execution:

whether it interacts with:
- A run of π with A
- An ideal run with F and S

Z

Protocol P securely realizes F if:
For any adversary A
There exists an adversary S
Such that no environment Z can tell

ZIdeal process:

Review of the definition:

Note:

There exist protocols for securely evaluating any multi­

party function under this definition:
– Goldreich-Micali-Wigderson [GMW87,G98,G04], for

any number of faults, computational.
– BenOr-Goldwasser-Wigderson [BGW88], for honest

majority, algebraic, “information-theoretic”.
– Many other protocols…

Characteristics of the basic definition

•	 Simplistic system model: Fixed set of parties, fixed
identities, fixed number of protocols.

•	 Fixed set of corrupted parties.

•	 Only function evaluation.
•	 Environment interacts with the computation only at the

beginning and the end.
•	 Only non-concurrent composition.

Wish-list for a more general framework

•	 Deal with more “real-life” settings such as:
–	 Asynchronous communication
–	 Unreliable and unauthenticated communication
–	 Variable (even unbounded) number of participants
–	 Variable identities

•	 Deal with reactive tasks (e.g., encryption, signatures,
commitments, secret-sharing…)

•	 Deal with adaptive break-ins to parties
•	 Deal with concurrent composition
•	 Allow proving security of “natural protocols”

Î The UC framework is aimed at all of the above goals
(except perhaps the last one… but not really)

Presenting the UC framework

•	 Generalize the underlying computational model
(“systems of ITMs”)

•	 Generalize the real-life model of protocol
execution

•	 Generalize the notion of a “trusted party” and
the ideal process

•	 Generalize the notion of protocol emulation

• Interactive Turing machines (ITMs):

An ITM is a TM with some special tapes:
– Incoming communication tape
– Incoming subroutine output tape
– Identity tape, contains ID=(SID,PID), where:

• SID is the “session ID”
• PID is the “party ID”

– security parameter tape
An activation of an ITM is a computation until a “waiting” state is
reached.

• Polytime ITMs:

An ITM M is polytime if at any time the overall number of steps
taken is polynomial in the security parameter plus the overall
input length (ie, # of bits on the input tape).

Systems of interacting ITMs (Variable number of ITMs):

A system of interacting ITMs is a pair (M0,C) where is the initial ITM and C
is a “control function” from sequences of requests to {0,1}. A run of the
system is the following process:

•	 M0 starts with some external input and value for the security
parameter.

•	 In each activation an ITM may request to write to at most one
tape of another ITM. A request includes:

–	 Identity of the requesting ITM
–	 Identity of the target ITM and tape, code for the target ITM.
– Contents

If the control function C allows the tuple (source id, target id, code,
tape) then the instruction is carried out. If no ITM with target id
exists then a copy is invoked, with said code, identity, and sec.
param.

•	 The machine written to is the next to be activated. If none then M0 is
activated next.

•	 The output is the output of the initial ITM M0.

ÎNotice: the identity of each ITM is globally unique.

•	 Convention:

If an ITM M is invoked because M’ wrote to its input tape then M is

called a subroutine of M’ and M’ is the invoker of M.

•	 States of systems of ITMs

– :A state of a system describes an instance in the run of the system,

including local states of all ITMs.

•	 Multi-party protocols:
–	 A multi-party protocol is a (single) ITM.
–	 An instance of a protocol P with SID sid, in a state s of a system,

is the set of all ITMs in s whose code is P and whose SID is sid.

(some technicalities are pushed under the rug…)

The “real-life model” for protocol execution

The real-life model for executing P with environment Z

is the following system of interacting ITMs:
•	 Initial ITM:

–	 Environment Z (the initial ITM, with fixed ID)
•	 Control function:

–	 Z can activate a (single copy of) an ITM A (adversary), and multiple
ITMs running P, all having the same SID, and write to their input tapes.

–	 A can write to the incoming comm. tapes of all parties and to the
subroutine output tape of Z.

–	 All other ITMs can write to the incoming comm. tape of A, can invoke
new ITMs, and can write to the subroutine output tape of their invoker
and the input tapes of their subroutines.

–	 Modeling corruptions: A can write a “corrupt” message on incoming
comm. Tape of ITM M. Then:

•	 M writes “Corrupted” on subr. output tape of Z
•	 From now on, in each activation M sends its entire state to A
•	 A assumes all write privileges of M.

• Notes:

–	 Z interacts with A freely throughout the computation.
–	 All communication between parties is done “via A”.
–	 Asynchronous communication, no authenticity/reliability guarantee.
–	 Z creates new parties adaptively, sets their identities.
–	 Adaptive corruptions.

•	 Notation:
–	 EXECP,A,Z (k,z,r) : output of Z after above interaction with P,A, on

input z and randomness r for the parties with s.p. k. (r denotes
randomness for all parties)

–	 EXECP,A,Z (k,z) : The output distribution of Z after above interaction
with P,A, on input z and s.p. k, and uniformly chosen randomness for
the parties.

–	 EXECP,A,Z :

The ensemble of distributions {EXECP,A,Z (k,z)} k in N, z in {0,1}*

Towards the ideal process:

Ideal Functionalities and dummy parties

An ideal functionality F is a PPT ITM with the following
conventions:

•	 The PID of F is unused (set to 0)

•	 F takes inputs from multiple parties – but only from parties

whose SID is identical to the local one.
•	 F can write outputs to all parties that write inputs to it, and

invoke new dummy parties with the same SID.

A dummy party for F does:

•	 Copy all inputs to the input tape of the copy of F with the same

SID as the local one.
•	 Copy all outputs from F to the subroutine output tape of its

invoker.

The ideal process

The ideal process for evaluating functionality F with environment Z

and adversary S is the following system of interacting ITMs:

•	 Initial ITM:

–	 Environment Z (the initial ITM, with fixed ID)
•	 Control function:

–	 Z can activate a (single copy of) an ITM A (adversary), and multiple
copies of ITMs running P, and write to their input tapes.
However, here A is “ideally replaced” with an ITM S, and the parties
running P are “ideally replaced” by dummy parties for F.

–	 F can write to the comm. tape of S and to the subroutine output tapes of
all dummy parties.

–	 S can write to the incoming comm. tape of F and to the subroutine output
tape of Z.

–	 Modeling corruptions: A can write a “corrupt M” message on incoming
comm. tape of F. Then, F does as it wishes… (typically, F will:

•	 Write “Corrupted” on subroutine output tape of M
•	 Reveal some information to S
•	 Let S influence the output that F provides to M)

• Notes:

– Communication from Z to F and back is immediate (F has to

explicitly “include S in the loop” if it so wishes).
– F knows who is corrupted… furthermore, the allowed

information leakage upon corruption has to be explicitly
specified.

• Notation:

– IDEALf

S,Z (k,z,r) : output of Z after above interaction with
F,S, on input z and randomness r for the parties with s.p. k.
(r denotes randomness for all parties, ie, r= rZ ,rS ,rf.)

– IDEALf
S,Z (k,z) : The output distribution of Z after above

interaction with f,S, on input z, s.p. k, and uniform
randomness for the parties.

– IDEALf
S,Z:

The ensemble {IDEALf
S,Z (k,z)} (k in N, z in {0,1}*)

Definition of security:

Protocol P emulates the ideal process for F if

for any adversary A there exists an adversary S

such that for all Z we have:

IDEALF
S,Z ~ EXECP,A,Z .

In this case we say that protocol P securely realizes F.

Note: There is no parameterization via the “set of corrupted parties”. (In the
current formulation there is no need… since F knows who is corrupted then
the security properties of the protocol under corruptions can be explicitly
expreseed in the code of F.)

Variants

•	 Passive (semi-honest) adversaries: The corrupted parties
continue running the original protocol.

•	 Unconditional security: Allow Z, A to be computationally
unbounded. (S should remain polynomial in Z,A,P,
otherwise weird things happen…)

•	 Perfect security: Z’s outputs in the two runs should be
identically distributed.

•	 Other variants (e.g., secure channels, authenticated
channels, synchronous communication) are captured as
ideal functionalities within the existing framework,
without changing the framework itself.

Equivalent formulations

(same as for the basic definition):

•	 Z outputs an arbitrary string (rather than one bit) and Z’s
outputs of the two executions should be indistinguishable.

•	 Z, A are limited to be deterministic.

•	 Change order of quantifiers: S can depend on Z.

Another equivalent formulation:

security w.r.t. a dummy adversary

•	 Consider the following adversary (the “dummy adversary”) Ad:
–	 When receiving (from Z) an input “deliver m to party id”, Ad writes m on

the communication tape of party id.
–	 When receiving an incoming message m from party id, Ad writes “got

m from party id” on the subroutine tape of Z.

(This description captures also the case of party corruptions.)

•	 Say that protocol P realizes functionality F w.r.t. the dummy adversary if
there exists an ideal-process adversary S such that for all Z we have
IDEALF

S,Z ~ EXECP,Ad,Z .

•	 Claim: P realizes F w.r.t. the dummy adversary iff it realizes F.

Proof:

•	 If P realizes F then it also realizes F w.r.t the dummy adversary.

•	 Assume P realizes F then w.r.t. dummy adversaries. That is,

there exists an ideal-process adversary Sd such that
IDEALF

Sd,Z ~ EXECP,Ad,Z . Now, let A be an arbitrary adversary.
Construct the following ideal process adversary S. S runs

simulated copies of A, Sd. Next:

–	 All inputs from Z are forwarded to A, and all outputs from A go to Z.
–	 When A sends message m to party id, S gives input “send m to id” to Sd.
–	 When Sd outputs “got m from id”, write “m from id” to comm. tape of A.
–	 All messages from F are forwarded to Sd, and all messages from Sd to F

are forwarded.

Analysis of Sd:
Want to show that IDEALF

S,Z ~ EXECP,A,Z . This is done as follows:

• Construct the following environment Zd:

– Runs simulated copies of Z and A. .
– Forwards all inputs/outputs from Z to the parties and back

– Forwards all inputs/outputs from Z to A and back
– Whenever A delivers message m to party id, Zd activates

the actual adversary with input “send m to party id”.
– When receives an output “got m from id” from the

adversary, Zd writes (“m from id”) on the communication
tape of A.

– Output whatever Z outputs.
• Can see:

IDEALF
S,Z = IDEALF

Sd,Zd ~ EXECP,Ad,Zd = EXECP,A,Z

The UC theorem

Will proceed in the usual steps:
• Present the hybrid model
• Present the UC operation
• State the UC theorem
• Discuss some implications
• Prove the theorem

Modular composition:

The basic idea for a single copy of f

Q

Q Q

Q

F

Î

Q
P

Q Q

Q

PP

P

The basic idea for multiple calls to F:

Q

Q Q

Q

FFF

Î

Q

P
P

P

Q

P

PP

Q
PP

P

Q
P

P
P

P
PP

PPP
PPP

P PPP

The “hybrid model” for protocol execution

The hybrid model for executing P with ideal functionality F and environment Z is

the following system of interacting ITMs:
•	 Initial ITM:

–	 Environment Z (the initial ITM, with fixed ID)
•	 Permission list:

–	 Z can activate a (single copy of) an ITM A (adversary), and multiple
ITMs running P, all having the same SID, and write to their input tapes.

–	 A can write to the incoming comm. tapes of all parties and to the

subroutine output tape of Z.

–	 All other parties can write to the incoming comm. tape of A, can invoke
new parties, and can write to the subroutine output tape of their invoker
and the input tapes of their subroutines.

–	 In addition, parties can provide inputs to and get outputs from multiple
copies of F, as follows:

•	 To send input x to copy of F with SID sid, when playing the role of
PID pid, a party sends the input x to the dummy party for F with
ID=(sid,pid).

•	 Outputs from the copy of F with ID=(sid,0) are received via dummy
parties for F with SID=sid (and some PID).

The “hybrid model” for protocol execution

(continued)

–	 Modeling corruptions: A can write a “corrupt” message on incoming
comm. Tape of ITM M. Then:

•	 M writes “Corrupted” on subr. output tape of Z
•	 From now on, in each activation M sends its entire state to Z
•	 A assumes all write privileges of M.
•	 Corruption messages to copies of F are treated as in the ideal

process (I.e., up to the discretion of F), with the exception that the
“corrupted” outputs are written directly on the subroutine tape of Z.

(Originates with [Micali-Rogaway91])

The composition operation: universal composition

Start with:
•	 Protocol Q in the F-hybrid model
•	 Protocol P that securely realizes F.

Construct the composed protocol QP:
•	 Each input to a dummy party for F with ID=(sid,pid) is replaced with an

input to an ITM running P with ID=(sid,pid).

•	 Each output of the ITM (sid,pid) is treated as usual (I.e., as an output

coming from a dummy party for F with ID=(sid,pid).

Note:
• In QP there may be multiple copies of P running concurrently.
•	 If P is a protocol in the real-life model then so is QP. If P is a protocol in the

F’-hybrid model for some functionality F’, then so is QP.

The universal composition theorem:

Let Q be a protocol that works in the F-hybrid model, and let P
be a protocol that securely realizes F. Then the protocol QP

emulates protocol Q. That is, for any t-limited adversary A
there is a t-limited adversary H such that for any Z we have

EXECF
Q,H,Z ~ EXECQp,A,Z .

Corollary: If protocol Q securely realizes functionality F’’ (in the F-hybrid
model) then protocol QP securely realizes F’’ as well.

Proof: Let A be an adversary that operates against QP. Then since
emulates there is an adversary H such that

EXECF
Q,H,Z ~ EXECQp,A,Z .

Since Q realizes F’’ there exists an adversary S such that

IDEALF
S,Z ~ EXECQ,H,Z .

The corollary follows.

Implications of the UC theorem

1.	 Can design and analyze protocols in a modular way:

–	 Partition a given task T to simpler sub-tasks T1…Tk

–	 Construct protocols for realizing T1…Tk.
–	 Construct a protocol for T assuming ideal access to

T1…Tk.
–	 Use the composition theorem to obtain a protocol

for T from scratch.

(Now can be done concurrently and in parallel.)

Implications of the UC theorem

2.	 Assume protocol P securely realizes ideal
functionality F. Can deduce security of P in
any multi-execution protocol environment:

As far as the collection of external protocols
are concerned, interacting with multiple
instances of P is equivalent to interacting with
multiple copies of F.

Proof outline:

(Will use the alternative formulation of the definition: security w.r.t. the

dummy adversary).
From the fact that P realizes F, we know that there exists an ideal ­

process adversary S such that IDEALF
S,Z ~ EXECQ,Ad,Z .

Consider the protocol QP in the real-life model.
We will construct an adversary H that interacts with protocol Q in the

F-hybrid model such that no Z can tell the difference between the
interaction with H,Q,F and the interaction with Ad,QP.

Then we will show that H is valid: Given an environment Z that
distinguishes between the two interactions with non-negligible
probability, we construct an environment Zp that distinguishes
between an interaction with P and Ad, and an interaction with F and
S. (Here S is the ideal-process adversary that is guaranteed by the
security of P.)

Adversary H :

The goal is to mimic the behavior of the dummy adversary Ad.

This is done as follows:
–	 Messages sent to and from the parties of Q (and their

subroutines) are forwarded to the actual parties I the F-
hybrid model. (Here H behaves exactly like Ad.)

–	 Messages sent to and from each instance of P are treated
as follows:

•	 For each instance of P, H keeps a simulated copy of S.
•	 All messages from Z to parties of P are forwarded to the

corresponding instance of S.
•	 Messages generated by each instance of S are forwarded to Z.
•	 Messages from each instance of S to its (only) copy of F are

forwarded to the corresponding copy of F.
•	 Messages from each copy of F in the external interaction are

forwarded to the corresponding copy of S.

Analysis of H :

Assume there is an environment Z that on input z distinguishes with

some probability e between a run of H with Q in the F-hybrid model
and a run of Ad with QP in the plain real-life model.

Construct an environment ZP that distinguishes with a related probability
between a single run of S in the ideal process for F, and a run of Ad
with P (in contradiction to the security of P).

We use a hybrid argument:
–	 Consider m “hybrid systems”: in the i-th system, the first i instances

of F are replaced by copies of P. (Here m is a bound on the number
of instances of P with this Z.) Then:

•	 The 0-th hybrid system is identical to a run of Q in the F-hybrid model.
•	 The m-th hybrid system is identical to a run of QP.
Î	 There exists an i such that Z distinguishes with proability e/m between

an interaction with the I-th system and an interaction with the I+1st
system.

ZP uses this fact similarly to the non-concurrent case.

(Details on the board.)

Some ideal functionalities

“standard” ideal functionalities:

An ideal functionality is called “standard” if it consists of an “outer
shell” and a “main program”, with the following properties:

Allowing S to delay receiving inputs and sending outputs:
–	 Whenever receiving an input from party (id), the outer shell notifies S

that it received input from (id). When receiving “ok” from S, the shell
forwards the input to the main program.

–	 Whenever the main program wishes to write an output to party (id),
the shell tells S that it wants to give output to (id). When receiving
“ok” from S, the shell forwards the output to (id).

Dealing with corruptions:
–	 When S asks to corrupt party (id), hand an output “corrupted” to (id),

and hand S all the inputs and outputs received/sent to (id) so far.
Also, from now on take all of (id)’s inputs from S, and send S all of
(id)’s outputs.

Î From now on, functionalities are standard unless said otherwise…

Example:

The authenticated message transmission

functionality, Fauth

1.	 Receive input (sid,pids,pidr,m) from party
(sid,pids). Then:

1.	 Output (sid,pids,pidr,m) to party (sid,pidr)
2.	 Send (sid,pids,pidr,m) to S
3.	 Halt.

F

Example:

The secure message transmission functionality,

smt

1.	 Receive input (sid,pids,pidr,m) from party
(sid,pids). Then:

1.	 Output (sid,pids,pidr,m) to party (sid,pidr)
2.	 Send (sid,pids,pidr,|m|) to S
3.	 Halt.

Example:

The key-exchange functionality FKE (I)

Wait to receive:
•	 (sid,pida,“exchange”,pidb) from party (sid,pida)
• (sid,pidb,“exchange”,pida) from party (sid,pidb)

Then:
•	 Choose a Å{0,1}k

•	 Output (sid,pida,pidb,a) to the two parties,
(sid,pida) and (sid,pida)

•	 Send (sid,pida,pidb) to S
•	 Halt.

Example:

The key-exchange functionality FKE (II)

Wait to receive:
• (sid,pida,“exchange”,pidb) from party (sid,pida)
• (sid,pidb,“exchange”,pida) from party (sid,pidb)

Then:
•	 If one of the parties is corrupted then obtain a value

a from S. Else, choose a Å{0,1}k

•	 Output (sid,pida,pidb,a) to the two parties,

(sid,pida) and (sid,pida)

•	 Send (sid,pida,pidb) to S
•	 Halt.

Example:

The ZKPoK functionality Fzk (for relation R),

1. Receive (sid, pidp,pidv,x,w) from (sid,pid). Then:
1. Output (sid, pidp, pidv, x, R(x,w)) to (sid,pid)
2. Send (sid, pidp, pidv, x, R(x,w)) to S
3. Halt

Example:

The commitment functionality, Fcom

1.	 Upon receiving (sid,pidp,pidv ,“commit”,x) from
(sid,pidp), do:

1.	 Record x
2.	 Output (sid,pidp,pidv, “receipt”) to (sid,pidv)
3.	 Send (sid,pidp,pidv, “receipt”) to S

2.	 Upon receiving (sid,“open”) from (sid,pidp), do:
1.	 Output (sid,x) to (sid,pidv)
2.	 Send (sid,x) to S
3.	 Halt.

Example:

The Synchronous Communication Functionality, Fsynch

(parameterized by a set T of PIDs of participants)

1.	 In the first activation set round number r Å0.

2.	 When receiving input “report” from party (sid,pid)

where pid is in T, do:
–	 Output r to the party, plus all the messages addressed to it

that were not yet delivered.
–	 Obtain from the party a list of messages to be delivered in the

next round. Send this list to S.

3. Once all the parties in T have sent their messages for

this round, increment r Å r+1 and return to Step 2.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

