6.897 Special Topics in Cryptography Instructors: Ran Canetti

Lecture 9: UC Commitments and Other Feasibility Results
March 4, 200/ Scribe: Susan Hohenberger

1 Summary of Previous Topics

In the past few lectures, we have turned our attention to analyzing the security of protocols.
We studied two different frameworks for discussing the security of a protocol: the basic and
the UC (universal composition) framework.

The basic framework makes certain assumptions about the world in order to keep things
as simple as possible. These assumptions are not always realistic (hence the need for the
stronger, UC framework), but they offer a starting point for the protocol designer. Any
protocol secure in the UC framework is also secure in the basic one, but the converse is not
necessarily true.

There are four main assumptions that we made about the world in the basic framework:

1. Non-reactive Tasks. We focus only on function evaluation, meaning the set of
protocols which require only a single round of inputs and outputs for each party
involved.

2. Synchronous Communication. Although there are many different types of syn-
chrony, here we define synchronous communication by the round. Let there be a
sequence of discrete rounds such that at the beginning of every round messages are
collected and at the end of the same round they are all delivered. There is no guaran-
tee on the order of delivery for messages in the same round, but all messages collected
in round ¢ are guaranteed to be delivered before any message is collected in round
¢+ 1.

3. Non-adaptive Corruptions. In the non-adaptive setting, the adversary must indi-
cate, at the start of the protocol, which parties it wishes to corrupt. These parties
will remain corrupted throughout the protocol.

4. Non-concurrent Modular Composition. We consider only the security threats
that arrive from running multiple protocols (either different protocols or multiple
copies of the same one) in a serial fashion, meaning that each protocol p; must halt
before protocol p;+; may begin executing.

Since the assumptions made above cannot typically be depended upon in the real world,
we add the following four properties to the basic framework so that we can more accurately
talk about the secure composition of protocols. We call this new framework the UC (uni-
versal composition) framework.

1. Reactive Tasks. We focus on general protocols, allowing multiple rounds of inputs
and outputs for each party involved.

Lecture9-1

IDEAL PROCESS PROTOCOL EXECUTION

P1

Figure 1: Pictorial view of the definition of security for a protocol .

2. Asynchronous Communication. Generally speaking, there is no synchrony guar-
antee whatsoever (although there are varying levels of weak synchrony that can also be
considered). There is no guarantee on the order in which messages will be delivered,
or even that they will be delivered at all.

3. Adaptive Corruptions. In the adaptive setting, the adversary may observe the
protocol execution for a time before deciding which parties it wishes to corrupt. The
adversary is also allowed to uncorrupt parties.

4. Concurrent Modular Composition. We consider the real life security threats that
arrive from running multiple protocols (either different protocols or multiple copies
of the same one) in a concurrent fashion, meaning that protocol p;1; may begin
executing at any time relative to the start of protocol p;. This is generally referred to
as “universal composition”.

The UC framework captures most other composition models; for our purposes, we will
consider it “general enough” to model the real world.
Recall the basic diagram for discussing protocol security in Figure 1.

Definition 1.1 Protocol 7 securely realizes a functionality F if for any adversary A there
exists a simulator S such that no environment Z can tell whether it interacts with:

e A real run of m with A.

e An ideal run with F and S.

Figure 1 and definition 1.1 take on an entirely new character when we consider them
to be operating in the UC framework. Since it is a reactive framework, the environment

Lecture9-2

Z is allowed to talk to all parties throughout the computation (- including the adversary
A!). Thus, the adversary can collude with the environment in an effort to cheat the honest
parties. Letting the adversary talk freely with Z is an independent definitional decision.
This is what allows for concurrent composition. Another way to think of this new framework
is to imagine that all messages Z wishes to send to the honest parties (and vice versa) must
be relayed through A. Modelling the reactive interaction between Z, A, and the honest
parties allows us to talk about the security of concurrently running protocols (e.g., recall
from last lecture that we do so by considering dummy adversaries in the hybrid model).
Everything hinges on the free communication between Z and A; if their communication is
restricted then not only would the current proof of the UC theorem be invalid, the theorem
itself would be false!

2 Feasibility Results in the UC Framework

After putting effort into understanding an abstract, UC framework that (hopefully) models
the real world, there are some natural questions to ask about it.

How do we write ideal functionalities? The first hurdle to designing protocols in
the UC framework is to understand which properties are desired from the ideal functionality.
This is not always trivial. In lecture 8, we saw two ideal functionalities for key-exchange.
In the first example, after receiving “exchange” requests from two parties, the functionality
selected a random value and sent it to both parties. However, after some additional thought,
we realized that such a functionality is a little too ideal. For honest parties, we would expect
such behavior from a key-exchange function, but we require no such guarantee when one of
the parties is corrupted. We changed the ideal functionality for key-exchange accordingly,
only requiring successful key exchange when both parties are honest and letting the adver-
sary choose the key otherwise. We will see more examples of writing ideal functionalities
later in this lecture.

Are known protocols UC-secure? Once we understand what we expect out of the
ideal functionality, the next hurdle is constructing a real-world protocol that acheives the
same goal. We already have several interesting protocols for key-exchange, commitments,
encryption, etc., which meet these ideal functionalities and are provably secure in the basic
framework, so a natural question to ask is: are the known protocols also UC-secure?

The answer is mixed. We’ll start with some good news.

Theorem 2.1 Multiparty protocols with authentication and an honest majority can realize
any functionality. [Can01]

In fact, the protocols with an honest majority from the basic framework work (with
only minor alternations) in the UC framework as well. For example, we can consider
the [BOGW88] protocols for up to % corrupted players, the [RBO89] protocols for up to any
corrupted minority, and the [CFGN96] adaptively-secure protocols for any honest majority
using open channels.

However, we are not so fortunate in the two-party case, where there is no honest majority.
For two-party functionalities, the known protocols do not work. The security proofs for these

Lecture9-3

protocols often fall apart because they can no longer count on black-box simulation with
rewinding — the simulator cannot rewind the UC environment Z. In fact, many interesting
functionalities' (e.g., commitments, zero-knowledge, coin tossing, etc.) cannot be realized
in the plain UC modell Today, we will prove this impossibility result for commitments.
Does it follow that we can’t achieve secure commitment schemes in the real world?

How do we design UC-secure protocols? Fortunately, we can achieve commitments
and all the other interesting two-party functionalities in the UC framework by adding a
common random string to our model. (We will prove this in a later lecture.)

Theorem 2.2 U(-secure commitment schemes exist in the common random string model.

[CF01, CLOS02, DN02, DG03, HMQO0/]

Theorem 2.3 UC(C-secure, non-malleable zero-knowledge proofs exist in the common ran-

dom string model. [CF01, DCO*01]

Theorem 2.4 UC-secure protocols exist for any two-party functionality in the common
random string model. [CDN01, CLOS02]

Theorem 2.4 generalizes to any multiparty functionality with any number of faults.

UC Encryption and Signatures Encryption and signatures are two of the most
commonly used cryptographic protocols, and it is very reassuring to discover that our
security definitions in the basic framework come very close to realizing UC encryption and
do, in fact, realize UC signatures even against an adaptive adversary:

We can write a digital signature functionality, Fg;q4, such that realizing Fy;, is equivalent
to security against adaptive chosen message attack as defined in [GMRS88]. In the ideal
functionality for Fl;,, we keep the secret key of the signer secret from Z. We can use Fj;,
to realize many desirable functionalities in the UC framework, including ideal certification
authorities and ideally authenticated communication.

It is also possible to write an ideal public key encryption functionality, Fpj., such that
realizing Fji. against non-adaptive adversaries is equivalent to security against adaptive
chosen ciphertext attack (CCA2) as defined in [RS91, DDN91]. In the ideal functionality
for Fpie, we keep the decryption key of the each party secret from F. Known CCA2-secure
cryptosystems only realize a relaxed variant of Fj;. and are only UC-secure against non-
adaptive adversaries. In fact, this a tricky subject. It is provably impossible to realize
F,ie with respect to adaptive adversaries in the plain UC framework, but some complicated
variants capturing almost all of Fp;. are possible (see [CHKO04]). It is an open problem
whether or not a simple implementation of an almost-complete Fjy,. functionality is possible.
Another question open for debate is: are Fy;y and Fpi. (as will be defined later in the course)
really the natural functionalities?

UC Key-exchange and Secure Channels In lecture 8, we also saw ideal function-
alities for key-exchange and secure-channels. In fact, we can show that these natural and

!Note that key-exchange can be realized in the plain UC model, but it is arguably not two-party in the
traditional sense, since two honest parties work together against a third dishonest party.

Lecture9-4

practical protocols are realized securely by ISO 9798-3, IKEv1l, IKEv2, SSL/TLS, and
other popular algorithms (provided their underlying assumptions are secure). Some nat-
ural protocols for which we do not have good intuition on their ideal functionalities are:
password-based key exchange, symmetric encryption, and message authentication. What
should ¢deally happen in these protocols?

3 UC Commitments

Now that we have a feeling for the UC framework and some general idea of the limitations
of realizing protocols that are secure in such a real world situation, we will see a concrete
impossibility result. It is impossible to realize UC-secure commitments in the plain UC
framework. Let’s first review the ideal functionality for commitments.

3.1 The Commitment Functionality, F,,,,

We define the stateful, commitment functionality, Fi,,, to behave as follows:
e Upon receiving (sid, C, V,“commit”, z) from (sid,C), do:
1. Record (sid,).
2. Output (sid, C,V,“receipt”) to (sid, V).
3. Send (sid, C,V,“receipt”) to S.

e Upon receiving (sid,“open”) from (sid, C), do:
1. Output (sid,z) to (sid, V).
2. Send (sid,x) to S.
3. Halt.

This functionality is reactive, since Fi,,, waits for two separate messages from C' — one
to commit and one to open — before halting. Thus, it cannot be captured as function
evaluation. Note that in Fi,,, we assume that once a commitment is opened it is public
information (i.e., freely known by any dishonest party).

3.2 Impossibility of Realizing F,,, in the Plain Model (i.e., without a
CRS)

In this section, we will prove that F.,y,, is unrealizable in the plain UC framework. We make
the following restrictions on any protocol attempting to realize Fiyp,:

1. Terminating. A protocol is considered to terminate if, when run between two honest
parties, some output is generated by at least one of the parties.

2. Bilateral. A protocol is bilateral if exactly two parties participate in it.
Considering the three restrictions above, we arrive at the following impossibility result:

Theorem 3.1 There exist no terminating, bilateral protocols that securely realize Feom, in
the plain UC framewortk.

This theorem holds even in the Fj,;,-hybrid model; however, we will see in the next
lecture that commitments become possible to realize in the F,,s-hybrid model (where each
party has access to a common random string).

Lecture9-5

IDEAL PROCESS PROTOCOL EXECUTION

Fcom

Figure 2: Pictorial view of the corrupt committer case for both the commit and open stages.

Proof. We will prove by contradiction. Suppose that P is a protocol that realizes Fi o, in
the plain UC framework. This means that for all adversaries A there exists a simulator S for
all environments Z such that Z cannot distinguish between an ideal run of F,,,, with S and
the protocol execution of P with A. Since there must exist a simulator S for any adversary
A, we will consider the “dummy” adversary Ay that simply passes messages between the
parties.

(I) Corrupt Committer. First, let us consider the following environment Zc and
real-life adversary A that controls the committer C' (illustrated in Figure 2):

e Ac is the dummy adversary. It reports to Z¢o any message received from the verifier
V, and send to V' any message provided by Z¢.

e Z¢ chooses a random bit b, and runs the code of the honest C' by instructing Ac to
deliver all the messages sent by C. Once V outputs “receipt”, Z¢ runs the opening
protocol of C' with V, and outputs 1 if the output bit ' generated by V is equal to b.

From the security of P, there exists an ideal-process adversary S¢ such that I DEAng,"Z"z

~ EXECp Ac zc, but this is a little weird. First, observe that in the real-life model, b’ (the
output of V') is almost always the same as the bit b that secretly Z chose. Consequently,
in the ideal process, b and b’ should almost always be the same. This means that the bit
z that S provides to Fi gy, at the commitment phase is almost always equal to b. If this
doesn’t seem odd yet, keep reading.?

2Essentially, Sc must be extracting the bit b out of the commitment Y. Since Sc¢ has no more power
than V', the verifier could simply hijack Sc¢’s code and extract the b itself.

Lecture9-6

IDEAL PROCESS PROTOCOL EXECUTION

b,

b "receipt"

Fcom

Figure 3: Pictorial view of the corrupt verifier case for only the commit stage.

(IT) Corrupt Verifier. Now, with this S in mind, let us consider the following
environment Zy and real-life adversary Ay that controls the verifier V' (illustrated in Figure
3):

e 7y chooses a random bit b, gives b as input to the honest commiter C, and outputs
1 if the adversary Ay outputs a bit ' = b.

e Ay runs S¢. Any message received from C is given to S¢, and any message generated
by Sc¢ is given to C. When S¢ outputs a bit z to be given to Fiyy,, Ay outputs x
and halts.

Notice that the view of S¢ when run by Ay is identical to its view when interacting
with Z¢ in the ideal process for F,,;,. Consequently, from part (I), we have that in the
run of Zy and Ay it is the case that b = b’ almost always. However, when Zy interacts
with any simulator S in the ideal process for F,.y,, the view of S is independent of b. Thus,
Zy outputs 1 with probability at most one half. This contradicts the assumption that P
securely realizes Fp,-

O

References

[BOGWS8S8| Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). STOC 1988, pages 1-10, 1988.

Lecture9-7

[Can01]

[CDNO1]

[CFO1]

[CFGN96]

[CHK04]

[CLOS02]

[DCO*01]

[DDNO1]

[DGO3]

[DN02]

[GMRSS]

[HMQO04]

[RBOSY]

[RS91]

Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. FOCS 2001, pages 136-145, 2001.

Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multi-party com-
putation from threshold homomorphic encryption. EUROCRYPT 2001, pages
280-299, 2001.

Ran Canetti and Marc Fischlin. Universally composable commitments.
CRYPTO 2001, pages 19-40, 2001.

Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. STOC 1996, pages 639-648, 1996.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. EUROCRYPT 2004, 2004. To appear.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. STOC 2002, pages
494-503, 2002.

Alfredo DeSantis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero-knowledge. CRYPTO 2001, pages
566-598, 2001.

Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography
(extended abstract). STOC 1991, pages 542-552, 1991.

Ivan Damgard and Jens Groth. Non-interactive and reusable non-malleable
commitment schemes. STOC 2003, pages 426-437, 2003.

Ivan Damgard and Jesper Buus Nielsen. Perfect hiding and perfect binding
universally composable commitment schemes with constant expansion factor.
CRYPTO 2002, pages 581-596, 2002.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. STAM Journal of Com-
puting, 17(2):281-308, 1988.

Dennis Hofheinz and Joern Mueller-Quade. Universally composable commit-
ments using random oracles. Theory of Cryptography Conference, 2004.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multi-party pro-
tocols with honest majority (extended abstract). STOC 1989, pages 73-85,
1989.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. CRYPTO 1991, pages 433-444, 1991.

Lecture9-8

