
6.897: Advanced Topics in Cryptography Feb 5, 2004

Lecture 3,4: Universal Composability

Lecturer: Ran Canetti Scribed by: Yael Kalai and abhi shelat

1 Introduction

Our goal in these two lectures is to prove the Composition Theorem that was presented at the end
of the previous lecture, and to show how it can be applied it to the zero-knowledge functionality.
As an example of the latter, we present the Blum Hamiltonicity protocol and discuss some issues
related to parallel composition.

2 Composition Theorem

Let P be a protocol that securely realizes a function f . Let Q be a protocol in the f -hybrid model.
Recall that the protocol QP is the composition protocol in which each call to f is replaced by an
invocation of P , and P ’s outputs are treated as the outputs of f .

Theorem 1 (The Composition Theorem): Protocol QP “emulates” protocol Q. That is, for any
B-limited adversary A, there is a B-limited adversary H such that for any any Z we have:

EXECf
Q,H,Z ∼ EXECQp,A,Z

We refer the reader to the previous lecture notes for notations and definitions.

3 Proof of the Composition Theorem

Let A be any B-limited adversary that interacts with protocol QP in the real-life model. Our goal
is to construct a B-limited adversary H that interacts with protocol Q in the f -hybrid model, such
that no environment Z can tell the difference between the two interactions. We will construct H
via the following three steps.

1. From A we construct an adversary AP that interacts only with protocol P .

2. From the security of P , there is an adversary SP in the ideal process for evaluation of f , such
that for every environment Z, IDEALf

SP ,Z ∼ EXECP,AP ,Z .

3. We use A and SP to construct an adversary H and show that for every environment Z,
EXECf

Q,H,Z ∼ EXECQP ,A,Z .

3,4-1

3.1 Adversary AP

We will use AP only when interacting with an environment Z, that gives AP an input which consists
of the internal state of A at the beginning of the round where protocol QP calls P . Thus, we will
define AP ’s behavior only with respect to such inputs. (If the input is of any other format then AP

halts.)
AP , on input an internal state of A at the beginning of the round where protocol QP calls P ,

will run A from this state, while interacting with P . At the end of the run, AP will output the
current state of A.

From the security of P , we know that there exists an adversary SP such that for every environ-
ment Z, IDEALf

SP ,Z ∼ EXECP,AP ,Z .

3.2 Adversary H

Now we will use A and SP to define an adversary H, which interacts with Q in the f -hybrid model.

1. Until the round where all parties in Q call f , run A. (Indeed, up to this point the protocols
Q and QP are identical.)

2. At the point where Q calls f , run SP with the current state of A as input. When SP generates
f -inputs for the corrupted parties, forward these inputs to f (Recall that SP is an adversary
in the ideal process for f). Finally, forward to SP the outputs that the ideal process f gives
to the corrupted parties.

3. Once SP generates an output, which consists of an internal state of A (follows form the
definition of AP and from the fact that P securely realizes f), continue running A from this
state.

4. Halt when A halts, and output whatever A outputs.

This Completes the definition of H.

3.3 Analysis of H

Our goal is to prove that for every environment Z, EXECf
Q,H,Z ∼ EXECQP ,A,Z . We will prove

this by contradiction, as follows. Assume that there exists an environment Z that, on input z,
distinguishes (with non-negligible probability) between a run of H with Q in the f -hybrid model
and a run of A with QP in the plain real-life model. We will construct an environment ZP that,
on input z, distinguishes with the same probability between a run of SP with the ideal process for
f and a run of AP with P . This will contradict the assumption that P securely realizes f .

The environment ZP , on input z, will operate as follows:

1. Run Z on input z, and orchestrate for Z an interaction of parties running QP with adversary
A, until the round where P is called.

2. At the round where P is called, start interacting with the external system, by giving the
external good parties the inputs that the simulated good parties would give to P , and by
giving the external adversary the current state of A.

3,4-2

3. Upon receiving the external outputs from the parties and the adversary, continue the simu-
lated interaction between A and the parties running QP – The good parties use their outputs
from the external system as the outputs of P , and A runs from the state given in the output
of the external adversary.

4. When the internal outputs are generated, hand them to Z, and output whatever Z outputs.

Notice that if the “external system” that ZP interacts with is an ideal process for f with
adversary SP then the simulated Z sees exactly the interaction with H and Q in the f -hybrid
model. If the “external system” that ZP interacts with is an execution of P with adversary AP ,
then the simulated Z sees exactly an interaction with A and QP in the plain real-life model. Thus,
ZP distinguishes with the same probability that Z distinguishes.

4 Implication of the Composition Theorem

The main implication of Composition Theorem is that using the our notion of security composes.
In other words, it enables us to design and analyze protocols in a modular way:

1. Partition a given task T to simpler sub-tasks T1, . . . , Tk.

2. Construct protocols for realizing T1, . . . , Tk.

3. Construct a protocol for T assuming ideal access to T1, . . . , Tk.

4. Use the composition theorem to obtain a protocol for T from scratch.

Thus far, we formally defined what it means for a protocol to securely realize a function f ,
and we proved the Composition Theorem, which shows that this definition has a nice composition
property. We would like to demonstrate the usefulness of such a definition. As a first step, we
will use this heave machinery to prove that zero-knowledge protocols compose sequentially, a result
which is well known and relatively easy to prove directly.

In order to prove that zero-knowledge protocols compose sequentially, we will first define zero-
knowledge in a “secure function evaluation” style, and show that it is essentially equivalent to the
standard definition.

5 Zero-Knowledge Proofs [GMR89]

We begin by defining the notion of computational indistinguishability, which will be used in our
definition of zero-knowledge.

Definition 1 Distribution ensembles D and D′ are computationally indistinguishable (denoted by
D ≈ D′) if for any polynomial time distinguisher A, for all c, d, and for all large enough k, and a
with |a| < kd, Pra,x←Dk

[A(1k, a, x) = 1]− Proba,x←D′
k
[A(1k, a, x) = 1] < 1/kc.

We next present a formulation of zero-knowledge protocols. Let R(x,w) be a polynomial time
relation.

Definition 2 A zero-knowledge protocol for R is a protocol for two parties P and V , where P has
(x,w) as input, V has no inputs, and the following holds.

3,4-3

• Completeness: for every pair (x,w), Pr[(P (x,w), V) = (x,R(x,w))] ∼ 1, where (P (x,w), V)
denotes the output of V after interacting with P (x, w).

• Soundness: For every possibly cheating prover P ∗ and for every input z, Pr[(P (z), V) =
(x, 1) ∧ (∀w R(x,w) = 0)] ∼ 0.

• Zero-knowledge: For every possibly cheating verifier V ∗ there exists a simulator S such that
for every x, w, z, S(x,R(x,w), z) ≈ V ∗P (x,w)(z), where V ∗P (x,w)(z) denotes the output of V ∗(z)
after interacting with P (x,w).

Remarks: This definition is syntactically different from the standard definition:

1. In the standard definition V gets x as input, whereas here V gets no input and instead it
outputs P ’s input.

2. The standard definition of zero-knowledge doesn’t make any completeness or secrecy require-
ment when R(x, w) = 0. In this definition it is required that both the completeness property
and the zero-knowledge property will hold also in the case where R(x,w) = 0.

Note that these are only a syntactic differences and it is easy to translate a protocol from one
definition to the other. In what follows, we consider an additional property, which is an enhanced

form of the standard proof-of-knowledge property. The proof-of-knowledge property was extensively
studied in the literature and was addressed in several different formulations. Here we will give a
new formulation which is in the spirit of the “enhanced proof-of-knowledge” property of Lindell
[Lin03].

• Soundness (II) or Extractablity: For any cheating prover P ∗ there exists a “knowledge ex-
tractor” E, such that for any z, we have E(z) = (t, x∗, w∗), where (t, (x∗, R(x∗, w∗))) ≈
AT (P ∗(z), V)), and AT is the the sequence of exchanged messages in the execution of
(P ∗(z), V)) with the output of V .

The extractability property assures that in each accepting interaction, where R(x∗, w∗) = 1, it is
possible to explicitly extract the witness w∗ from the prover’s input. That is, the extracted witness
is the“appropriate witness” for this interaction.

5.1 ZKPoK as SFE

Let R(x,w) be a binary relation. Consider the 2-party function:

FR
ZK((x,w),−,−) = (−, (x,R(x, w)), (x,R(x,w)))

To interpret this function, note that both the Verifier and the Adversary have no inputs and
both receive a theorem, x, and the verity of the theorem as represented by the binary relation
R(·, ·).

Theorem 2 A two-party protocol securely realizes FR
ZK (with respect to non-adaptive adversaries)

if and only if it is a zero-knowledge proof for R with the extractability property.

Proof: The proof is given as a homework exercise. 2

3,4-4

6 Blum’s Graph Hamiltonicity

As a concrete example, we will work through the Blum Graph Hamiltonicity protocol presented
in [Blu86]. Recall that a Hamiltonian cycle, H of a graph G is a path which visits each node of G
exactly once. This problem is NP -complete.

The first tool used in this protocol is a Commitment scheme. A commitment scheme is a two-
party, two-step process. In the first phase, known as the Commitment phase, the commiter C gives
a value x to the reciever in an envelope. In the Decommitment phase, C opens the envelope to
reveal the value for V . We would like to guarantee that at the end of the first phase, the verifier V
has no knowledge of the value of x. After the Commitment phase, we would like to guarantee that
there is only a single fixed value x to which C can successfully decommit. More formally, a tuple
(C,D, Vc, Vd) of interactive Turing Machines is a bit commitment scheme if

1. Completeness: For all b ∈ {0, 1}

Pr[(C(b), Vc)→ (sc, sv), (D(sc), Vd(sv))→ (·, b)] ∼ 1

Intuitively, the bit to which one commits is the same bit which is revealted via the decom-
mitment protocol. The notation (C(b), Vc) → (sc, sv) represents the fact that the protocol
defined by C, V creates outputs sv, sc for the Committing and Verifying ITMs respectively.

2. Secrecy: For all ppt machines V ∗c , we have that

(C(0), V ∗c)V ∗ ∼ (C(1), V ∗c)V ∗

Commitments to one and zero are indistinguishable. Recall, that that the output of the
interaction between (C(·), V ∗c) is a pair (sc, sv), and (C(·, V ∗c)V ∗ represents V ∗’s component
of the output. That is, sv from the left protocol is indistinguishable from sv on the right.

3. Binding: For all C∗, D∗,

Pr[(C∗, Vc)→ (sc, sv), (D∗(sc, 0), Vd(sv))→ (·, 0), (D∗(sc, 1), Vd(sv))→ (·, 1)] ∼ 0

The adjectives on C∗, D∗ determine whether binding is perfect or computational.

The basic Blum protocol is based on the relation, HC(G, H) = 1 if H is a Hamiltonian cycle
in the graph G. The common input to Blum’s protocol is a k-node graph, G. The Prover knows a
secret witness, H, which is a Hamiltonian cycle in G.

The protocol is as follows:

1. P (r, G, H): If HC(G, H) = 0 then send the value (G, reject) to V . Otherwise, choose a
random permutation, σ ∈ Sk on k elements and send (G, C(σ(G)), C(σ)) to V . In this case,
C(σ(G)) represents a bit-by-bit commitment to the adjacency matrix of the permuated graph,
σ(G).

P
(G,C(σ(G)),C(σ))−→ V

2. V : If the input is (G, reject), then output (G, 0). Otherwise, select a random bit b uniformly
and send it to P .

P
b←− V

3,4-5

3. P : If b = 0 then decommit all of the commitments sent in the first message. This case checks
whether the messages sent in the first round are well formed.

If b = 1, exhibit a Hamiltonian path in σ(G) by decommiting to the k edges in σ(G) which
form a Hamiltonian path.

P
decommit to C(σ(G)), C(σ) or C(σ(H))

−→ V

4. V : If all of the commitment openings are accepted, and if b = 1 and the opened commitments
form a Hamiltonian cycle, then accept by outputting (G, 1). Otherwise, output (G, 0).

We want to show that this protocol realizes the functionality FHC
zk . However, the soundness

error on this protocol is 1/2 since a cheating Prover might try to guess what V will ask for and
manipulate his messages accordingly. In order to achieve full soundness, and moreover, a proof of
knowledge, we have to repeat the protocol several times. The hope is that repetition will preserve
zero-knowledge and simultaneously diminish the soundness error.

Naturally, sequential repetition of this protocol works. Although this can be proven directly, we
shall use the composition theorem. The three steps of the proof are to (1) Define a ZK with a weak
proof-of-knowledge property and show that the protocol above satisfies it (2) Show how to realize
Fzk in the Fwzk-hybrid model (3) and finally use the composition theorem to deduce security of the
composed protocol.

6.1 ZP and Weak PoK

We take the first step in relaxing the notion of Fzk by allowing a soundness error of 1/2. We
formally define this weak zero-knowledge functionality Fwzk as follows:

FR
wzk((x,w), ·, c) =


(·, (x, 1), (x, 1)) if R(x,w) = 1
(·, (x, 0), (x, 0)) else if c = no cheat
(·, (x, b), (x, b)) where b← {0, 1} if c = cheat

In this case, the third input corresponds to whether there is cheating on the Prover’s side. If c
indicates cheating, then the transcript passes one half of the time, and fails the other half.

Claim 1 The basic Blum protocol securely realizes FH
wzk.

Proof Sketch: Let A be a B-limited adversary that interacts with the protocol. We need to construct
an ideal-process adversary S such that no environment can distinguish between an execution in the
ideal world with S or the real-world with A. Since there are only two parties in the protocol, there
are only 4 types of B-limited adversaries. We consider each case below:

1. A controls the verifier (Zero-knowledge):

3,4-6

Z

P

Fwzk

S
A

Z

P

A

V

Ideal process Protocol Execution

indistinguishable

In this case, S receives the input z′ from Z and runs A(z′). If the value from Fwzk is (G, 0)
then give (G, reject) to A. Otherwise, if the value from Fwzk is (G, 1) then do:

(a) Choose a random bit b′ and a random permutation σ.

(b) If b′ = 0 then hand A the pair C(σ(G)), C(σ).

(c) If b′ = 1 then hand A the pair C(Q), C(σ) where Q is a randomly chosen Hamiltonian
cycle on k nodes.

(d) If A’s response is the same as b′ then open the commitments. Else, repeat this up to k
times.

We must show that no PPT environment Z can distinguish between IDEALFwzk
P,S,Z and EXECP,V,A,Z .

The reduction is based on the secrecy of the commitment scheme. In particular, an environ-
ment Z which can distinguish the two distributions can be used to construct a Z ′ which can
distinguish commitments (C(0), V)V from commitments (C(1), V)V .

Note that when b′ = 0, the distribution of the IDEAL view is exactly the same as the
distribution of the EXEC view conditioned on the Verifier’s message being 0. However, when
b′ = 1, the Simulator commits to the adjacency matrix of a random k-cycle, whereas in the
real execution, the Prover commits to the actual graph.

Therefore, any advantage that the environment demonstrates must come from the case when
b′ = 1. Let p0 represent the probability that the environment Z outputs a 1 when the
Simulator has b′ = 1 and pk2 represent the probability that Z outputs a 1 during a real
execution with the adversary controlling the Verifier and b = 1. By assumption, p1 − pk2 ≥
1/kc for some constant c > 0 and security parameter k.

We invoke a hybrid argument to construct a distinguisher for (C(0), V)V and (C(1), V)V .
Consider the distribution over strings induced by C(Q), C(σ) and C(G), C(σ) respectively.
Note that the Hamming distance between the adjacency matrix of G and the adjacency ma-
trix of a randomly chosen k-cycle is at most k2. Additionally, p0 as defined above corresponds
to the probability that Z outputs a 1 on the first distribution, and pk2 represents the same
probability on the latter one. As we incrementally replace the commitments in the randomly
selected k-cycle with the same commitments from the graph, there will be one hybrid dis-
tribution for the environment Z in which the difference between the probabilities is at least
1/kc+2. The distinguisher Z ′ works by introducing the unknown commitment at this step,
running the environment Z and echoing its output.

3,4-7

2. In the second case, A controls the prover (weak extraction). In this case, S gets the input z′

from Z and immediately runs A(z′). S obtains the first message from A which will be of the
form (G, C(G′), C(σ)). S then sends the bit b = 0 to A and obtains the opening of G′0 and
σ0.

Z

Fwzk

S
A

V

indistinguishable

A
V

Protocol Execution

P

Ideal process

Then S rewinds A on the same random input and sends it b = 1, obtaining G′1. If all of the
decommitments succeed, then S constructs the Hamiltonian cycle and then gives (G, H) to
Fwzk as the Prover and sends to the environment the output of A from either the first or
second runs chosen at random. If only all of the decomittments for one value of b succeed
then the S gives (G, ·) to the oracle for Fwzk as the prover and sends the message “cheat” on
the direct line. After receiving the output (G, b′) from the oracle, if b′ = 0 then S returns the
output value from A during the faulty run. Otherwise, S returns the output from A on the
successful run.

If in both cases, some of the decommitments fail, then S sends (G, ·) to Fwzk as the prover,
sends “no cheat” on the direct line, and hands Z the output from A on either of the runs
chosen at random.

The key point here is that if A answers both challenges correctly, then Z expects V to always
accept. If only one challenge is answered, then Z expects V to accept half the time, and if no
challenge is answered correctly, then Z expects V to reject. Furthermore, Z expects to see
the matching output from A.

S guarentees the same view for Z as in the execution except in the case when some com-
mitment decommits to different values in the two runs of the A. This implies breaking the
binding property of the commitment scheme.

3. A controls neither party. In this case, S obtains the output from Fwzk, generates a corre-
sponding transcript of the protocol and gives it to A. Then S outputs whatever A outputs.

4. A controls both parties. S runs A and echoes its output.

The indistinguishability follows from the security of the commitment schemes.
2

6.2 From FR
wzk to FR

zk

In this subsection, we present the natural protocol for realizing FR
zk in the FR

wzk-hybrid model. The
protocol is sequential repetition.

3,4-8

1. P (x,w): Run k copies of FR
wzk, sequentially. Send (x,w) to each copy.

2. V : Run k copies of FR
wzk sequentially. Let (xi, bi) be the output from the ith copy. If all of

the (xi, bi) values are the same, then output (x1, b1).

3. Else output nothing, or some default value (x0, 1) for some x0 for which a witness w is known.

Let A be an adversary that interacts with the protocol in the FR
wzk-hybrid model. We can con-

struct an ideal-process adversary (simulator) S that interacts with FR
zk and fools all environments.

Again, there are four cases to analyze:

1. If A controls the verifier (zero-knowledge), all A sees is the value (x, b) k times. To simulate
this, S simply takes the value (x, b) from the trusted party and outputs it k times to A.

2. If A controls the Prover, A should give k pairs (xi, wi) to the TP for FR
wzk. The simulator

S runs A and obtains the k pairs. If all of the xi are identical and all of the wi are valid
witnesses or all are invalid witnesses, then S gives (xi, wi) to the TP for FR

zk. Otherwise, S
gives a default value (x0, w0) to the TP.

3. A controls neither party. As before, S receives output from the Trusted Party, forms it into
a transcript and sends it to A. S echoes A’s output.

4. A controls both parties. S echoes A’s output.

We can also see that the views from Z are a perfect simulation. Note that all of the computa-
tional indistinguishability issues have been pushed into the realization of FR

wzk and the composition
theorem. The same kind of analysis works for other ZK protocols that have weak extraction. For
example, consider the graph coloring protocol with soundness 1/n. Hence, there is no need to
reprove sequential composition for all of these protocols. You only need to prove that the single
iteration securely realize FR

wzk.
One might consider parallel repetition of the Blum Hamiltonicity protocol in which the verifier

only accepts if all of the copies accept. For this, we cannot use the Composition theorem. Although
intuition leads us to believe that parallel repetition is still secure, the standard proof fails because the
old simulation now requires exponential time. In particular, for dishonest verifiers, the probability
of guessing all k bits of the verifier’s challenge is 2−k. Therefore, the rewinding step of the simulation
might require exponential time. Although it is unknown whether parallel repetition of this protocol
is zero-knowledge (it is known, however, that it cannot be proven to be ZK using traditional black-
box simulation unless NP = BPP), there are examples of ZK protocols which are no longer
ZK when two copies are run in parallel. See Goldreich and Krawczyk [GK96b] and Feige and
Shamir [FS92].

One fix to this problem of parallel repetition due to Goldreich and Kahan [GK96a] is to have
the Verifier commit to his bits before the Prover sends her first message.

1. Prover sends a key to a perfectly hiding commitment scheme C ′.

2. Verifier sends commitments to bits C ′(b1), . . . , C ′(bk).

3. Prover sends C(σi(G), C(σi) for 0 ≤ i ≤ k.

4. Verifier decomits to bits: D′(b1), . . . , D′(bk).

3,4-9

5. Prover responds as before using bi.

6. Verifier accepts if all i responses are valid.

Although this protocol solves the problem with simulation, it introduces a problem with sound-
ness. If P and V use the same commitment scheme, C, and C is malleable in the sense that given
C(b) there is an efficient way to generate C(1 − b), then a dishonest prover P ∗ can cheat. After
receiving ci = C(bi), P ∗ can generate commitments as follows : if ci opens to a one, then generate
a commitments c′i which open to a Hamiltonian cycle and otherwise generate a commitment that
opens to a permutation of G. Certainly the binding property of the commitment before does not
preclude this. We need extra properties on the commitment scheme to work around this problem.

Another solution to the problem was presented by Brassard, Crepeau and Yung [BCY91]. In
their scheme, they use “equivocable commitments” such that one you have a secret key, you can
open a commitment in either way.

A recent scheme due to Alon Rosen [Ros04] offers a novel way around to achieve constant-round
zero-knowledge with a much simpler analysis.

References

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. In Proceedings of the
International Congress of Mathematicians, pages 444–451, 1986. Berkeley, California.

[BCY91] Gilles Brassard, Claude Crepeau, and Moti Yung. Constant-round perfect zero-knowledge
computationally convincing protocols. Theoretical Computer Science, 84(1):23–52, 1991.

[FS92] Uriel Feige and Adi Shamir. Multi-oracle interactive protocols with constant space veri-
fiers. J. Comput. Syst. Sci., 44(2):259–271, 1992.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof
systems for NP . J. Cryptology, 9(3):167–190, 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of Zero-Knowledge Proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems. Siam Journal of Computing, 18:186–208, 1989.

[Lin03] Y. Lindell. General composition and universal composability in secure multi-party com-
putation. In 44th Foundations of Computer Science, pages 394–403, 2003.

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP . In Theory of
Cryptography Conference, pages 191–202, Feburary 2004.

3,4-10

