
� �

6.897: Advanced Topics in Cryptography Apr 22, 2004

Lecture 21: Neff (VoteHere) Voting Scheme
Scribed by: Chris Peikert

Topics for this lecture:

A comment on Neff ’s mix­net •

Batch verification •

The Boneh­Golle scheme •

• Randomized partial checking (RPC) of mix­nets

1 Comment on Neff ’s mix­net

Recall the novel trick used by Neff: each mix server is also a decryption server (in an “onion”
architecture). During the mixing, an ElGamal ciphertext (gr,m · yr) is re­randomized by

rc ceach server by choosing a random and secret c, and producing (g ,m · yrc). In addition,
the pair (g, gc) is published by the server.

Upon decryption, the server takes cth roots of each ciphertext and proves correctness
by showing equality of discrete logs (e.g., via Chaum­Pedersen) using the published (g, gc)
pair.

2 Batch verification

Consider the following abstract problem (outside the context of voting): given g and n pairs
xi(xi, yi), verify that each yi = g .

The naive solution is to just perform n exponentiations and compare the results with
the yis. But consider the case that n = 2: we can save an exponentiation by checking if
(x1 + x2, y1 · y2) is a good pair. Certainly if the two original pairs are good, so is the third.

The converse isn’t true in general, but with randomization we can get a good chance of
detecting a bad set of pairs. The general test is to pick a random subset S ⊆ [n], combine,
and check. I.e., check that � �

xi, yi

i∈S i∈S

is a good pair, using only one exponentiation. See [BGR98] for information about the batch
verification techniques in today’s lecture.

Theorem 1 If the original set of pairs is invalid, then the above check detects this fact with
probability at least 1/2.

21­1

� �

�

It’s easy to see that the detection probability can’t be any better than 1/2: if there is
only one bad pair in the set, it will be excluded half the time, in which case the test passes.

Instead of proving Theorem 1, we will introduce a more general test and bound its error
probability.

The generalized test is the following: instead of choosing a single random bit of pair i
(i.e., “include i in S” or not), pick a random si from some small range {0, . . . , 2t−1}. Then
check that ⎛ ⎞ ⎝ sixi, y si ⎠

i
i∈[n] i∈[n]

is a valid pair.
In terms of computation, this test only takes about 1.5t multiplications (to compute

siy) per pair, but only one general exponentiation. i
Notice that this test has some issues in the application to mix­nets: for the first test, the

mix only needs to reveal the set of outgoing ciphertexts corresponding to the random set S.
This compromises voter privacy a little bit, but not too much. In the second test, the mix
must reveal the set of outgoing ciphertexts corresponding to each of the 2t possible values
of si. This leaks significantly more information about how votes are permuted through the
mix­nets, though it may not be entirely fatal.

Theorem 2 The above test will accept invalid input with probability at most 2−t .

Proof: If the set is invalid, let’s isolate one invalid (¯ y) pair, and let �̄x, ¯ s be the corresponding
sjs̄s¯random coefficient. Then the test checks whether (¯x + sj xj , ȳ yj) is a valid pair.

Let ¯ =� x be the discrete log of ¯z ¯ y, base g. Then the discrete log of the right half of the pair
is z̄ + c, where c is some constant independent of ¯s¯� s. In order for the test to pass, we need
¯x + sj xj = z̄ + c, where the summation is also independent of ¯s¯ s¯ s. Because g has prime

x =� z̄, there is only one value of ¯order and ¯ s that causes the test to pass, and it is chosen
with probability 2−t . 2

Now let’s see how these tests are applicable to mix­nets.

3 The Boneh­Golle approach to mix­nets

We want to efficiently verify that a mix has operated properly, i.e. that it has permuted its
inputs and re­encrypted them using an additive random pad in the exponent.

Here is the idea: pick a random subset S of the inputs, and get the input ciphertexts
ci for each i ∈ S. Combine all these inputs, via component­wise multiplication, to get ˆ� c, a
“meta­input” which is a ciphertext of m̂ = i∈S mi.

Now, challenge the mix server to produce a corresponding set S�, of the same size as
S, such that the “meta­output” (defined similarly) encrypts the same message m̂. (Note
that the set S� should be permuted so as not to reveal the exactly correspondences between
input and output ciphertexts.) The proof, as always, is done by showing equality of discrete
logs.

Let’s be careful: there is a striking difference between what is true about the meta­
output, and what is provable by the mix sever. For example, it is possible that the mix

21­2

4

changes some votes (turns 10 votes for Carter and 10 votes for Reagan into 11 votes for
Carter and 9 votes for Reagan), yet can almost always find output ciphertexts such that the
meta­output encrypts the same meta­message as the meta­input. (In our example, the only
problematic challenge set S is the one exactly corresponding to the 10 votes for Reagan).

The informal theorem is that it is hard to prove that invalid mixing is correct. More
formally:

Theorem 3 (Thm 7.1 in Boneh­Golle) If the mix server operated incorrectly, and if
the mix can satisfy a random challenge with probability at least 3/8 − �, then discrete log
can be solved in polynomial time.

Notice that we lose some privacy with each repetition of the proof: with α challenges,
we can narrow down an input ciphertext’s corresponding to among about n/2α of the
outputs. Perhaps the serial nature of the mixes may better hide the overall input­output
correspondences, but this seems hard to analyze.

Here is an idea for a fix: apply the idea behind the 2 × 2 mix. Choose a set S and
combine the ciphertexts into 2 meta­inputs (corresponding to S and S̄) and 2 meta­outputs
(corresponding to T and T ̄), and show that all four sets are the same size and that the
meta­outputs encrypt the same values as the meta­inputs (but without giving the corre­
spondence).

Research Question 1 Is this scheme still secure? The proof of Theorem 3 depends on the
use of a random subset S, but the above technique only works if |S| is exactly n/2 (otherwise
it is clear how the meta­outputs correspond to the meta­inputs).

Randomized partial checking (RPC)

Here is a quick summary of a scheme using ideas from [JJR02] and Chaum: each organiza­
tion that does mixing actually controls two consecutive mixes, and does normal mixing for
both. Challenges are issued on the middle; that is, a random subset S of the middle cipher­
texts is chosen. For each ciphertext in S, its corresponding input ciphertext is identified
and proven to be correct. For each ciphertext in S̄, its corresponding output ciphertext is
identified and proven to be correct.

There is some loss of privacy: across two consecutive mixes, one can learn that an input
ciphertext corresponds to one of n/2 outputs ciphertexts.

There is a novel soundness property: when cheating, the chance of being caught is
exponential (base 1/2) in the number of votes that the mix attempts to change! This seems
reasonable for large elections, though not for ones that may decided by only a few votes.
(In these cases, we can invoke one of the slower proof techniques on the original data.)

For efficiency, we can do batch verification of the ciphertext correspondences. This
causes no loss in privacy, but it affects the soundness.

References

[BGR98] M. Bellare, J. Garay, and T. Rabin. Batch verification with applications to cryp­
tography and checking. In Proceedings LATIN ’98, pages 170–191, 1998.

21­3

[JJR02]	 M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In D. Boneh, editor, USENIX Security
2002, pages 339–353, 2002.

21­4

