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6.897: Advanced Topics in Cryptography Apr 22, 2004 

Lecture 21: Neff (VoteHere) Voting Scheme 
Scribed by: Chris Peikert 

Topics for this lecture: 

A comment on Neff ’s mix­net • 

Batch verification • 

The Boneh­Golle scheme • 

• Randomized partial checking (RPC) of mix­nets 

1 Comment on Neff ’s mix­net 

Recall the novel trick used by Neff: each mix server is also a decryption server (in an “onion” 
architecture). During the mixing, an ElGamal ciphertext (gr,m · yr) is re­randomized by 

rc ceach server by choosing a random and secret c, and producing (g ,m · yrc). In addition, 
the pair (g, gc) is published by the server. 

Upon decryption, the server takes cth roots of each ciphertext and proves correctness 
by showing equality of discrete logs (e.g., via Chaum­Pedersen) using the published (g, gc) 
pair. 

2 Batch verification 

Consider the following abstract problem (outside the context of voting): given g and n pairs 
xi(xi, yi), verify that each yi = g . 

The naive solution is to just perform n exponentiations and compare the results with 
the yis. But consider the case that n = 2: we can save an exponentiation by checking if 
(x1 + x2, y1 · y2) is a good pair. Certainly if the two original pairs are good, so is the third. 

The converse isn’t true in general, but with randomization we can get a good chance of 
detecting a bad set of pairs. The general test is to pick a random subset S ⊆ [n], combine, 
and check. I.e., check that � � 

xi, yi 

i∈S i∈S 

is a good pair, using only one exponentiation. See [BGR98] for information about the batch 
verification techniques in today’s lecture. 

Theorem 1 If the original set of pairs is invalid, then the above check detects this fact with 
probability at least 1/2. 
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It’s easy to see that the detection probability can’t be any better than 1/2: if there is 
only one bad pair in the set, it will be excluded half the time, in which case the test passes. 

Instead of proving Theorem 1, we will introduce a more general test and bound its error 
probability. 

The generalized test is the following: instead of choosing a single random bit of pair i 
(i.e., “include i in S” or not), pick a random si from some small range {0, . . . , 2t−1}. Then 
check that ⎛ ⎞ ⎝ sixi, y si ⎠ 

i 
i∈[n] i∈[n] 

is a valid pair. 
In terms of computation, this test only takes about 1.5t multiplications (to compute 

siy ) per pair, but only one general exponentiation. i 
Notice that this test has some issues in the application to mix­nets: for the first test, the 

mix only needs to reveal the set of outgoing ciphertexts corresponding to the random set S. 
This compromises voter privacy a little bit, but not too much. In the second test, the mix 
must reveal the set of outgoing ciphertexts corresponding to each of the 2t possible values 
of si. This leaks significantly more information about how votes are permuted through the 
mix­nets, though it may not be entirely fatal. 

Theorem 2 The above test will accept invalid input with probability at most 2−t . 

Proof: If the set is invalid, let’s isolate one invalid (¯ y) pair, and let �̄x, ¯ s be the corresponding 
sjs̄s¯random coefficient. Then the test checks whether (¯x + sj xj , ȳ yj ) is a valid pair. 

Let ¯ =� x be the discrete log of ¯z ¯ y, base g. Then the discrete log of the right half of the pair 
is z̄ + c, where c is some constant independent of ¯s¯� s. In order for the test to pass, we need 
¯x + sj xj = z̄ + c, where the summation is also independent of ¯s¯ s¯ s. Because g has prime 

x =� z̄, there is only one value of ¯order and ¯ s that causes the test to pass, and it is chosen 
with probability 2−t . 2 

Now let’s see how these tests are applicable to mix­nets. 

3 The Boneh­Golle approach to mix­nets 

We want to efficiently verify that a mix has operated properly, i.e. that it has permuted its 
inputs and re­encrypted them using an additive random pad in the exponent. 

Here is the idea: pick a random subset S of the inputs, and get the input ciphertexts 
ci for each i ∈ S. Combine all these inputs, via component­wise multiplication, to get ˆ� c, a 
“meta­input” which is a ciphertext of m̂ = i∈S mi. 

Now, challenge the mix server to produce a corresponding set S�, of the same size as 
S, such that the “meta­output” (defined similarly) encrypts the same message m̂. (Note 
that the set S� should be permuted so as not to reveal the exactly correspondences between 
input and output ciphertexts.) The proof, as always, is done by showing equality of discrete 
logs. 

Let’s be careful: there is a striking difference between what is true about the meta­
output, and what is provable by the mix sever. For example, it is possible that the mix 

21­2




4 

changes some votes (turns 10 votes for Carter and 10 votes for Reagan into 11 votes for 
Carter and 9 votes for Reagan), yet can almost always find output ciphertexts such that the 
meta­output encrypts the same meta­message as the meta­input. (In our example, the only 
problematic challenge set S is the one exactly corresponding to the 10 votes for Reagan). 

The informal theorem is that it is hard to prove that invalid mixing is correct. More 
formally: 

Theorem 3 (Thm 7.1 in Boneh­Golle) If the mix server operated incorrectly, and if 
the mix can satisfy a random challenge with probability at least 3/8 − �, then discrete log 
can be solved in polynomial time. 

Notice that we lose some privacy with each repetition of the proof: with α challenges, 
we can narrow down an input ciphertext’s corresponding to among about n/2α of the 
outputs. Perhaps the serial nature of the mixes may better hide the overall input­output 
correspondences, but this seems hard to analyze. 

Here is an idea for a fix: apply the idea behind the 2 × 2 mix. Choose a set S and 
combine the ciphertexts into 2 meta­inputs (corresponding to S and S̄) and 2 meta­outputs 
(corresponding to T and T ̄), and show that all four sets are the same size and that the 
meta­outputs encrypt the same values as the meta­inputs (but without giving the corre­
spondence). 

Research Question 1 Is this scheme still secure? The proof of Theorem 3 depends on the 
use of a random subset S, but the above technique only works if |S| is exactly n/2 (otherwise 
it is clear how the meta­outputs correspond to the meta­inputs). 

Randomized partial checking (RPC) 

Here is a quick summary of a scheme using ideas from [JJR02] and Chaum: each organiza­
tion that does mixing actually controls two consecutive mixes, and does normal mixing for 
both. Challenges are issued on the middle; that is, a random subset S of the middle cipher­
texts is chosen. For each ciphertext in S, its corresponding input ciphertext is identified 
and proven to be correct. For each ciphertext in S̄, its corresponding output ciphertext is 
identified and proven to be correct. 

There is some loss of privacy: across two consecutive mixes, one can learn that an input 
ciphertext corresponds to one of n/2 outputs ciphertexts. 

There is a novel soundness property: when cheating, the chance of being caught is 
exponential (base 1/2) in the number of votes that the mix attempts to change! This seems 
reasonable for large elections, though not for ones that may decided by only a few votes. 
(In these cases, we can invoke one of the slower proof techniques on the original data.) 

For efficiency, we can do batch verification of the ciphertext correspondences. This 
causes no loss in privacy, but it affects the soundness. 
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