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6.879 Special Topics in Cryptography  Instructor : Ran Canetti

Lecture 20: Verifiable Mix­Nets 
April 16, 2004 Scribe: Matt Lepinski 

Two­By­Two Verifiable Mixes 

Before solving the general case of verifiably mixing n ciphertexts, we first consider the case 
of a verifiable two­by­two with two incoming ciphertexts, C1 and C2 and two outgoing 
ciphertexts C � and C2

� . In this case, what the mixer must prove is that:1 
1 

(C1 ≈ C1
� ) ∧ (C2 ≈ C2

� ) ∨ (C1 ≈ C1
� ) ∧ (C2 ≈ C1

� ) 

This is equivalent to proving: 

[(C1 ≈ C1
� )∨ (C1 ≈ C2

� )]∧ [(C2 ≈ C1
� )∨ (C2 ≈ C2

� )]∧ [(C1
� ≈ C1)∨ (C1

� ≈ C2)]∧ [(C2
� ≈ C1)∨ (C2

� ≈ C2)] 

Observed that the above expression is a conjunction of four disjunctions. We will give a 
protocol which allows the prover to prove a single disjunction. The prover can then prove 
the entire expression by separately proving that each of the four disjunctions is true. 

First we recall from last lecture the Chaum­Pedersen honest zero knowledge protocol for 
proving that two El Gamal ciphertexts, C1 = (α1, β1) = (gt,m1 · yt) and C � = (α1

� , β1
� )1 = 

(gu,m�
1 · yu) have the same plaintext (where the prover knows the re­encryption factor, v = 

u− t).2 Let (a1, a2, b1, b2) be the quadruple (g, y, (α1
� /α1), (β1

� /β1)) = (g, y, g
Then m1 

v , (m1
� /m1)· yv ). 

= m2 if and only if loga1 
(b1) = loga2 

(b2) = v. (Proof left as an easy exercise.) To 
prove equality, use the following protocol: 

P V 

randomly select from ∗Zs q 
¯ ¯: A = ( Ā  

1, A2) = (a
←− c 

)s −→ 2
s, a1

: randomly select from ∗Zc q 

r = s + c ∗ v : r −→ 

Accept if a r 
1 = A1b

c 
1 and a
r 

2 = A2b
c 
2 

(This is really two parallel instances of the previous Chaum­Pedersen protocol, sharing r 
and c. Although we don’t need this fact here, this protocol could be showing equality of 
logarithms in two distinct groups.) The protocol is honest­verifier zero­knowledge; it is also 
a proof of knowledge of v. Moreover it is “special HVZK”: given any specific c, one can 

¯pick A and r to match the conditional distribution of the transcripts, given c. 
We now present an honest zero­knowledge protocol for proving the disjunction [(C1 ≈

C1
� ) ∨ (C1 ≈ C2

� )] (where the prover knows either the first re­encryption factor r1 or the 

1Recall that we denote the relation “C has the same plaintext as D” by writing C ≈ D. 
2Here we assume that g is a publically known generator of Zq 

∗ . 
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second re­encryption factor r2):3 This protocol is derived from the paper by Cramer et 
al. [CDS94]. 

P V 
¯ ¯ A1, A2 −→ 

←− c : randomly select c 

r1, r2, c1, c2 −→ 

The verifier accepts if (1) the Chaum­Pedersen verifier would accept the triple ( ¯ A1, c1, r1) 
with ciphertexts C1 and C1

� (2) the Chaum Pedersen verifier would accept the triple ( ¯ A2, c2, r2) 
with ciphertexts C1 and C2

� and (3) c = c1 ⊕ c2. 

Completeness: Without loss of generality, we consider the case where the prover knows 
first read encryption factor r1. The prover then runs the Chaum­Pedersen simulator for 

¯ciphertexts C1 and C2
� to obtain the triple ( ¯ A2, c2, r2). The prover then chooses A2 as the 

¯ ¯honest prover would in the Chaum­Pedersen protocol and sends A1, A2 to the verifier. 
Upon receiving, challenge c from the verifier, the prover chooses c1 so that c = c1 ⊕ c2 

and computes the response r1 to challenge c1 as the honest prover would in the Chaum­
Pedersen protocol. The verifier will accept because ( ¯ A1, c1, r1) are constructed honestly as 
in the Chaum­Pedersen protocol and ( ¯ A2, c2, r2) are constructed by the Chaum­Pedersen 
Simulator. That is, the verifier accepts ( ¯ A1, c1, r1) because the Chaum­Pedersen protocol 
is complete and the verifier accepts ( ¯ A2, c2, r2) because the Chaum­Pedersen protocol is 
honest zero­knowledge. 

Soundness: Recall that the “special” soundness of the Chaum­Pedersen protocol implies 
¯that if for some A you have more than one valid c, r pair then you can extract a witness to 

the fact that the two ciphertexts have the same plaintext (in particular, the re­encryption 
factor). If in the above protocol the prover can answer some � fraction of possible challenges 
where � is non­negligible, then one can sample random challenges c and in polynomial time 
find a pair of challenges c =� c� such that the prover correctly answers responds to both c 
and c�. Since c = c1 ⊕ c2 and c� = c�1 ⊕ c2

� and c = c� then either c1 = c1
� or c2 = c� . Therefore 2

one can extract either a witness that C1 ≈ C1
� or a witness that C1 ≈ C2

� and hence the 
disjunction [(C1 ≈ C1

� ) ∨ (C1 ≈ C2
� )] must be true. 

Honest Zero­Knowledge: The simulator picks c1 and c2 independently at random and 
¯selects c so that c = c1 ⊕ c2. The simulator then constructs A1 and r1 corresponding to 

challenge c1 in the same way that the Chaum­Pedersen simulator would. Similarly, the 
¯simulator constructs A2 and r2 corresponding to challenge c2 in the same way that the 

Chaum­Pedersen simulator would. Observe that since c1 and c2 are chosen independently, 
c is a random element of Zq ∗ . 

Remark: In the above protocol, one can interpret c1 and c2 as a sharing of secret c. 
This is a special case of a general connection between secret sharing schemes and proofs of 
monotone Boolean formulas. See [CDS94] for more details. 

Here we denote by ⊕ the operation of addition in the ring Zq 
∗. 
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Remark: Since the above protocol is honest zero knowledge, it is also witness indistinguish­
able. Recall the witness indistinguishable proofs can be composed in parallel and remain 
witness indistinguishable. 

2 Going From 2 to n 

Here we use sorting networks to build an n by n verifiable mix from many 2 by 2 verifiable 
mixes. 4 A sorting network is a circuit with n input wires and n output wires consisting of 2 
by 2 comparator gates. The operation of a comparator is as follows: If the two input wires 
have values x and y then the comparator outputs max(x, y) on the “top” output wire and 
min(x, y) on the “bottom” output wire. 

x −−−−− ◦ −−−−−max(x, y) 
| 
| 
| 

y −−−−− ◦ −−−−−min(x, y) 

Such a network of comparators is a valid sorting network if for any possible set of values on 
the n input wires, the values on the n output wires are in sorted order. There exist sorting 
networks with n log2 n comparators. More efficient sorting networks also exist, but are very 
complex. 

The property of a sorting network which we make use of is that the sorting network can 
realize all possible permutations. Our strategy is to replace each comparator in a sorting 
network with a 2 by 2 verifiable mix to achieve an n by n verifiable mix. That is, (A) if the 
prover shows that each comparator in the network is performing a valid permutation then 
the entire network must be performing a valid permutation and (B) since the comparators in 
the network are capable of realizing any n by n permutation, the fact that a sorting network 
is used gives the verifier no information about the permutation being implemented.5 

Remark: Since the proof that the permutation is valid will follow the structure of the 
sorting network, it is reasonable for the prover to take this into account when performing 
the mix. One idea is to have the prover perform the mix as follows: First the prover picks 
a random meta­tag for each input ciphertext. Then the prover runs the sorting network to 
sort according to the meta­tags. Then at the end, the prover deletes the meta­tags. 

Remark: To obtain the challenges for the proof, you could either have everyone commit to 
challenges ahead of time (i.e, have everyone commit to a share of the master challenge) and 

4For more information on sorting networks see “Introduction to Algorithms” by Cormen, Leiserson, Rivest 
and Stien (MIT Press and McGraw­Hill, 2001). The approach here for building a mix network based on a 
corresponding sorting network is due to Jakobsson and Juels [JJ99]. 

5Depending on the notion of voter privacy that we are trying to achieve, we may not actually need to 
use a sorting network here. If we were to use any network of comparators that allowed each input value 
to reach each output position (but not necessarily capable of realizing every permutation) then we would 
still achieve a weaker yet meaningful notion of voter privacy. One can imagine settings where one would be 
willing to accept the weaker notion of voter privacy in exchange for gains in prover efficiency. 
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then have everyone decommit after the first step of the proofs had been given. Alternatively, 
you could use the Fiat­Shamir paradigm and obtain the challenges by hashing the first prover 
message in the protocol. Additionally, when running the mix­net, one could think of having 
each mix server give a proof of correctness before the next mix­server began working, but 
in practice it is probably better for all the servers to give proofs after all the mixing has 
been done (as this allows for greater parallelism). 

Remark on Batch Sizes: 

In a large election it is probably infeasible to run a single mix­net consisting of all voters in 
the election. Instead, it is probably more reasonable to mix the ballots in batches (possibly 
corresponding to some geographic region such as a precinct or county). The problem with 
making batches too large is that it increases the time to perform the mix. The problem 
with making the batches too small is that voters are anonymous only within their batch. To 
better understand the efficiency of the above scheme, we roughly estimate its performance 
on a precinct with a thousand voters. 

Number of Voters(n) = 103 

Number of Comparators(nlog 2 n) = 105 

Modular Exponentiations per Comparator = 10 

Total Modular Exponentiations = 106 

Modular Exponentiations per Second (on PC) = 50 − 100 

Total Time to Perform Verifiable Mix = 3 − 4 hours 

It seems fairly reasonable to have a separate PC for each precinct and 3­4 hours is very 
reasonable amount of time to have to wait for election results. Therefore, one can imagine 
the above scheme actually being used in practice. However, Andrew Neff in his paper, 
“Verifiable Mixing (Shuffling) of ElGamal Pairs”, provides an even faster verifiable mixing 
protocol which requires just 8n + 5 modular exponentiations to prove and 9n + 2 modular 
exponentiations to verify. Dan Boneh says that the Neff mixing protocol is efficient enough 
to mix batches of 100,000 ballots in about 20 hours. 
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