
E

E

MIX− MIX−
NET NET

MIX−
NET

#1 #2 #K

DEC

Cn,0

C1,0

Cn,1

C1,1

Cn,k

C1,k

Vn

V1B1

Bn

1 

6.879 Special Topics in Cryptography Instructors: Ran Canetti  

Lecture 19: Verifiable Mix-Net Voting 
April 15, 2004 Scribe: Susan Hohenberger 

In the last lecture, we described two types of mix-net voting protocols: decryption mix-
nets and re-encryption mix-nets. Today, we direct our focus to El Gamal based re-encryption 
mix-nets. The malleability of El Gamal encryptions, a drawback in many applications, is 
beneficially used to re-encrypt each ciphertext with new randomness without knowledge of 
the underlying ballot contents. Further, the output of each El Gamal re-encryption mix-
net can be publically verified using a well-known protocol for proving the equivalence of 
two discrete logarithms [CP92] and a few other tricks. Today, we begin to show how a 
concerned citizen can verify the output of a mix-net server. We also discuss some ways in 
which a malicious voter might attempt to “cheat the system” and provide some techniques 
for discouraging this undesirable behavior. 

The Challenges of Verifiable Mix-Net Voting 

Let us briefly recall the key steps in our El Gamal, verifiable mix-net voting protocol, as 
illustrated in Figure 1. 

Figure 1: A Mix-Net Voting Protocol 

First, a group of respectable, but mutually distrusting parties (such as the Republican 
Party, the ACLU, an election official, etc.) jointly carry-on a secure computation protocol 
to generate an El Gamal keypair of the form (gx, x), where the public key gx is published 
and the secret key x is known to no one, but can be recreated from a threshold of shares 
distributed among the parties. Next, ballots B1 . . . Bn are generated by n different voters 
and encrypted, under gx, to the ciphertexts C1,0 . . . Cn,0 with the help of some (hopefully 
trustworthy) computing resources. Then the ciphertexts are sent through k mix-net servers, 
presumably operated by a host of respectable parties with competing interests, such as the 
Republican, Democratic, and Green Parties. All ciphertexts are posted to a public bulletin 
board. Once the outputs of the mix-servers are verified to be correct, a threshold of the 
parties jointly agree to decrypt the ballots and count the vote. 

19-1 



2 Keeping the Voter Honest 

Any secure voting protocol must defend itself against a host of adversaries. The voter 
herself may attempt to “cheat the system”; that is, behave in ways that defeat the ideals 
of a voting democracy. One such example, that we discuss in detail in the next lecture, is 
vote selling. Any valid voting scheme should not allow a person to prove how they voted to 
a third party. Today, we look at two other problems that could arise during the production 
of the initial encrypted ballots C1,0 . . . Cn,0. 

1.	 Canceling a vote. 

Suppose Bob cares nothing about the election, but wishes to thwart Alice’s attempt 
to express her opinion ... whatever that opinion is. We say that Bob cancels Alice’s 
vote if, after seeing her encrypted vote Ca,0 and without knowledge of how she voted, 
Bob can generate a ciphertext Cb,0 that votes against Alice’s preference. For example, 
if Alice votes yes on issue 23, then we want to prevent Bob from creating an encrypted 
ballot with the opposite vote (i.e., no on issue 23) without knowing how either he or 
Alice voted. 

2.	 Copy-cat voting. A similar scenario that we also want to prevent is vote copying. If 
Alice tells Bob she is voting yes on issue 23 and he decides to vote the way she does, 
that is fine. But if Alice chooses not to tell Bob how she voted on an issue, then he 
should not be able to simply “copy” her vote. (It is not hard to imagine various kinds 
of voter coercion based on copying.) 

Both vote canceling and vote copying can be prevented if Bob is forced to prove knowl­
edge of how he is voting; that is, when Bob presents his encrypted ballot Cb,0, he must be 
prepared to give a zero-knowledge proof of knowledge of the plaintext contents of the ballot. 

2.1 Proving Knowledge of Plaintext 
tGiven an El Gamal ciphertext C = (α, β) = (g ,myt) under the public key y, a voter 

can prove knowledge of m (i.e., how they voted) by instead proving knowledge of t. The 
justification is that the voter could obtain m from C using t. 1 An efficient, 3-round protocol 

tfor proving knowledge of t, assuming that g is public, is as follows: 

P	 V 

A = g s s ∈ Zq 
−−−−−−−→ 

c←−−−−−−−−−−−−− c ∈ Zq 

r = Agtcr = s + ct Check that: g ?−−−−−−−−−−−−→ 

1Shafi Goldwasser and Ran Canetti suggested simply using CCA2-secure Cramer-Shoup [CS03] instead of 
El Gamal encryption for the ballots, since its non-malleability prevents an adversary from getting a related 
message in a different ciphertext (assuming that we disallow the exact same ciphertext for two voters). This 
idea was debated for a while, until it was given up on account of that fact that the Cramer-Shoup secret 
key might be necessary to verify the output of the mix-nets. One of the core properties that we want from 
a voting protocol is public verification. 

19-2 



Here the prover P is the voter, possibly working together with the trusted encryption 
software E in Figure 1, while the verifier V might be an election official. 

2.2 Honest Verifier Zero Knowledge 

The protocol in the previous section is an honest verifier zero knowledge (HVZK) proof of 
knowledge protocol. An HVZK protocol has a special soundness property: if the verifier 

sgets to see two transcripts that use that same initial commitment from the prover A = g
where the verifier is allowed to use two different challenges c1, c2 and receive the responses 
r1 = s + c1t, r2 = s + c2t, then the verifier may compute t. (Since the verifier knows 
r1, r2, c1, c2, he can solve for s and t.) For more examples of HVZK applications, see the 
work of Jakobsson and Juels [JJ99] and Cramer, Damgard and Schoenmakers [CDS94]. 

3 Keeping the Mix-Server Honest 

A re-encryption mix-server can behave maliciously in two ways: (1) it can attempt to alter 
the vote count, and (2) it can attempt to destroy voter privacy. In this section, we discuss 
how to defeat the first adversarial behavior by forcing the mix-server to provide proof that 
it did not alter the vote count. Destroying voter privacy, by leaking information about 
the permutation used, is beyond our mathematical ability to solve. It is impossible for 
an election official to verify that a mix-server did not sell its permuation information to 
the mafia. Thus, the accuracy of the vote count is computationally secure (DL hard so 
that mix-server can’t fake proofs) while the voters’ privacy depends on at least one of the 
mix-servers being honest (i.e., keeping its permutation information secret). 

Each mix-server takes in k El Gamal ciphertexts Ci = (αi, βi), re-encrypts them, ran­
domly permutes them, and outputs this new sequence of ciphertexts. To prove that it did 
not alter the vote count, each mix-server must prove that each ballot in the input appears 
in the output. 

More formally, each mix-server must prove the following NP statement: 

∃π on {1, . . . , n} nodes ,

∃ elements s1, . . . , sn,


∀i ∈ {1, . . . , n},

Ci,0 = (αi,0, βi,0) and Cπ(i),1 = (απ(i),1, βπ(i),1), 

siwhere απ(i),1 = αi,0g
si , βπ(i),1 = βi,0y . 

Since it is an NP statement, it is clear that we can prove this in zero-knowledge 
[BGG+88], the question is: how fast? We first consider the following subroutine. 

3.1 The Chaum-Pedersen Protocol 

This section was editted from a gracious donation by Yael Kalai. 
First, we consider the simpler task of merely proving that one ciphertext is a re­

tencryption of another. Let c1 = (α1, β1) = (g ,m1y
t) and c2 = (α2, β2) = (gu,m2y

u) 

19-3




be any two ciphertexts. Note that c2 is a re-encryption of c1 if and only if c1 and c2 are 
both encryptions of the same message. Let 

m2(a1, a2, b1, b2) = (g, y, 
α2 

,
β2 ) = (g, y, g u−t , y u−t). 

α1 β1 m1 

Claim 1 The ciphertext c2 is a re-encryption of c1 if and only if loga1 
(b1) = loga2 

(b2). 

Proof 1 First, we consider the forward implication. If c2 is a re-encryption of c1, then 
m2(a1, a2, b1, b2) = (g, y, gu−t , m1 

yu−t) = (g, y, gu−t, yu−t) since m1 = m2. Thus, we see that 
logg (gu−t) = logy (yu−t) = u− t. 

We consider the reverse implication. If loga1 
(b1) = loga2 

(b2), then c2 = (α1g
v , β1y

v ) for 
some v ∈ Zq , but this term can be factored out of the ciphertext to reveal c2 = c1(gv , yv ), 
where (gv , yv ) is simply an encryption of 1! 

Thus, proving that c2 is a re-encryption of c1 boils down to proving that loga1 
(b1) = 

loga2 
(b2) or in other words that (a1, a2, b1, b2) is a DDH tuple. We can do this by running 

the Chaum-Pederson protocol [CP92] for proving that a tuple (g, y, w, u) = (g, gx, gr , grx) 
is a DDH tuple. We now describe that procotol: 

P V 

s(a, b) = (g , w s)s ∈ Zq 
−−−−−−−−−−−−−−→ 

c←−−−−−−−−−−−−− c ∈ Zq 

accept if and only if 
t = s + cr−−−−−−−−−−−−→ 

gt = awc ∧ yt = buc 

Here, all that the prover must know is the re-randomization factor r; not the message itself! 
The above protocol is an honest verifier zero-knowledge proof-of-knowledge (of x) protocol. 

3.2 Considering a n × n Mix 

Now that we know how to show that an El Gamal ciphertext c2 is a re-encryption of a 
ciphertext c1, we want to use this to build a n × n mix. That is, we want to prove that 

. . . , cn) are re-encryptions of (c1, . . . , cn) without revealing the actual correspondence. (c1,
� �

One naive approach is to have the kth mix-server prove the following NP statement in 
zero-knowledge: 

∀ i ∃ j such that Ci,k ≈ Cj,k+1 and 
∀ j ∃ i such that Ci,k ≈ Cj,k+1 

Unfortunately, an n× n mix-server could prove this statement is true and still be cheat­
ing. To see this, consider the case where n = 3. Suppose, input to the mix-server, were 
two votes for Donald Duck and one vote for Minnie Mouse. The output of a malicious 
mix-server could be one vote for Donald Duck and two votes for Minnie Mouse – and the 
above statement would still be true! 

19-4 



However a quick inspection of the possibilities shows that the above statement is suffi­
cient for a simple 2 × 2 mix. We will therefore build a general-purpose n × n mix out of 2 
× 2 mixes – and we will see how to do this next class. 

References 

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Hastad, Joe Kilian, 
Silvio Micali, and Phillip Rogaway. Everything Provable is Provable in Zero-
Knowledge. In Advances in Cryptology - Crypto ’88, pages 37–56, 1988. 

[CDS94]	 Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of Partial 
Knowledge and Simplified Design of Witness Hiding Protocols. In Advances in 
Cryptology - Crypto ’94, pages 174–187, 1994. 

[CP92]	 David Chaum and T.P. Pedersen. Wallet Databases with Observers. In Advances 
in Cryptology - Crypto ’92, pages 89–105, 1992. 

[CS03]	 Ronald Cramer and Victor Shoup. Design and analysis of practical 
public-key encryption schemes secure against adaptive chosen ciphertext 
attack. SIAM Journal of Computing, 2003. To appear. Available at 
http://www.shoup.net/papers. 

[JJ99]	 Markus Jakobsson and Ari Juels. Millimix: Mixing in Small Batches. Technical 
report, 1999. 

19-5



