
6.897: Advanced Topics in Cryptography Apr 9, 2004 

Lecture 18: Mix­net Voting Systems 
Scribed by: Yael Tauman Kalai 

1 Introduction 

In the previous lecture, we defined the notion of an electronic voting system, and specified 
the requirements from such a system. In particular, we required an electronic voting system 
to be verifiable and robust. Loosely speaking, a voting system is said to be verifiable if any 
individual can verify that his vote was counted. A voting system is said to be robust if 
there does not exist any small set of servers that can disrupt the election. 

The voting systems that appear in the literature can be roughly categorized into three 
groups: one based on mix­nets, one based on homomorphic encryptions, and one based on 
blind signatures. In this lecture we concentrate on mix­net protocols. We describe two 
types of mix­net protocols: decryption mix­nets and re­encryption mix­nets. 

The general structure of mix­nets was illustrated in the previous lecture. They begin 
with an initial encryption phase E, whose outputs are posted on a bulletin board, in order 
to achieve verifiability. The initial encryption phase is followed by several mix phases 
mix1, . . . ,mixk . The reason we need several of them is to achieve robustness. In decryption 
mix­nets, the mix phases mix and partially decrypt, whereas in re­encryption mix­nets, the 
mix phases mix and re­encrypt. In re­encryption mix­nets a final decryption phase D is 
added. 

2 Decryption Mix­Net 

A decryption mix­net does not have a final decryption phase. Rather, the initial encryption 
phase E encrypts its inputs by applying a concatenation of k encryption operations to each 
input; each mix peels off one of these encryptions by applying a corresponding decryption 
algorithm; it then mixes all its decrypted inputs by applying a secret random permutation 
to them. Thus, this scheme has the structure of an onion; E builds the onion, and each 
mix peels off one layer of the onion. 

More specifically, each mix has its own pair of keys. We denote the keys of mixi by 
(SKi, PKi). mixi decrypts its inputs using its keys (SKi, PKi); it then secretly permutes 
all its decrypted inputs. 

The initial encryption E has the public keys of all the mixes (PK1, . . . , PKk ); it encrypts 
each input by first encrypting it with PKk, then encrypting the result with PKk−1, then 
encrypting the result with PKk−2, and so on. Thus, if we denote the ballots by B1, . . . , Bn, 
then for each i = 1, . . . , n, 

Ci = E(Bi) = E(PK1 . . . E(PKk−1, E(PKk , Bi)) . . .). 

There are some issues that need to be addressed: 

18­1 



1. Note that secure encryption schemes do not hide the length of the plain texts. Since 
the outputs of E appear publicly on a bulletin board, in order to preserve secrecy, we 
must require all the cipher­texts to be of the same length. 

2. Note that that mixk (the last mix) generates the final output of the vote. Thus, if 
he doesn’t like the output he may abort. One way of preventing mixk from aborting, 
is by making his secret shared. This arouses further issues, such as key management. 

3. It seems like semantic security is enough, assuming the encrypted ballots are publicized 
only after all the voters have voted. Otherwise, we need a stronger security notion, 
such as CCA2 security, in order to achieve non­malleability. 

4. The above protocol, as described, is neither verifiable nor robust. In order to achieve 
these two desired properties, we need to add some ingredients to the protocol. These 
ingredients will be added following the description of re­encryption mix­nets. 

3 Re­encryption Mix­nets 

As opposed to a mix phase in a decryption mix­net, whose role is both to mix and to 
partially decrypt, the role of a mix phase in a re­encryption mix­net is only to mix. Note, 
however, that a mix which merely scrambles the inputs is not good enough. This is so, 
since by merely scrambling, the resulting set of ciphertexts does not change, and thus for 
each resulting ciphertext it is easy to recover the voter associated with it. Thus, an extra 
operation is needed in order to mix in an unrecoverable way. In a re­encryption mix­net, 
the extra operation added to each mix phase is a re­encryption operation. 

In total, a re­encryption mix­net consists of an initial encryption phase E, several mix 
phases mixi, . . . , mixk , who mix by scrambling and re­encrypting, and a final decryption 
phase D. Typically, the encryption scheme used in a re­encryption mix­net is the El­Gamal 
encryption scheme, which has a nice re­encryption property. In what follows, we describe 
in more detail an El­Gamal based re­encryption mix­net. 

3.1 El­Gamal Based Re­encryption Mix­nets 

Recall that in the El­Gamal encryption scheme, an encryption of a message m, with respect 
to a public key (p, g, y), consists of a pair (gr , myr ), where all the operations are done 
modulo p, and r ∈R Zq where q is a large prime dividing p − 1, where g is a generator of 
the subgroup of elements whose order divides q, and m is in this subgroup. The secret key 
corresponding to (p, g, y) is x such that gx = y(mod p). 

The El­Gamal encryption scheme has the following nice re­encrypting property: any 
encrypted message (a, b) = (gr , myr ) can be re­encrypted by choosing a random s ∈R Zq 

and computing (ags, bys) = (gr+s, myr+s). Note that this re­encrypting operation results 
with a random ciphertext for the same message m. 

We are now ready to define the El­Gamal based re­encryption mix net: 

1. An El­Gamal public­key (p, g, y) is generated (in some distributed manner). 

18­2 



2. The initial encryption phase E simply encrypts all the ballots B1, . . . , Bn by applying 
the El­Gamal encryption algorithm with the public­key (p, g, y). It then posts all the 
resulting ciphertexts (C1,0, . . . , Cn,0) on a bulletin board. 

3. The	 i’th mix phase, on input a set of ciphertexts (C1,i−1, . . . , Cn,i−1), re­encrypts 
each ciphertext and permutes the resulting ciphertexts using a secretly chosen random 
permutation. 

4. The final decryption phase D, given a set of ciphertexts (C1,k , . . . , Cn,k ), simply de­
crypts all the ciphertexts in some distributed manner (in order to achieve robustness). 

3.2 Verifiability and Robustness 

Recall that a voting system is said to be verifiable if all voters can verify that their vote 
was counted. A voting system is said to be robust is a small set of servers cannot disrupt 
the election. Note that the above mix­net protocol is neither verifiable nor robust. In order 
to obtain these two properties several ingredients must be added to the protocol. 

In particular, one ingredient which may be added is the requirement that each mix 
server prove that he has indeed done the correct operation. Namely, each mixi will be 
required to prove that there exists a permutation π such that Cj,i is a re­encryption of 
Cπ(j),i−1, for j = 1, . . . , n. 

In what follows we consider the simpler task of merely proving that one ciphertext is a 
tre­encryption of another. Let c1 = (α1, β1) = (g ,m1y

t) and c2 = (α2, β2) = (gu ,m2y
u) be 

any two ciphertexts. Note that c2 is a re­encryption of c1 if and only if c1 and c2 are both 
encryptions of the same message. Consider the tuple 

m2(g, y, 
α2 

,
β2 ) = (g, y, g u−t , y u−t). 

α1 β1	 m1 

α2Thus, c2 is a re­encryption of c1 if and only if (g, y, α1 
, β2 ) is a DDH tuple, i.e., tuple ofβ1 

the form (g, y, gr , yr ), which is equivalent to being a tuple of the form (g, gx , gr , grx). Thus, 
proving that c2 is a re­encryption of c1 boils down to proving that (g, y, gr , yr ) ∈ DDH. 

In what follows we describe the Chaum­Pederson protocol [CP92] for proving that a 
tuple (g, y, w, u) = (g, gx , gr , grx) is a DDH tuple. 

P	 V 

s(a, b) = (g , y s)s ∈ Zq 
−−−−−−−−−−−−−−→ 

c←−−−−−−−−−−−−− c ∈ Zq 

−−−−−−−−−−−−→ accept if and only if 
t = s + cr t t cg	 = awc ∧ y = bu

It is easy to verify that the above protocol is an honest verifier zero­knowledge proof­of­
knowledge protocol. 

Remarks: 

18­3 



1. Neff proposed a slightly different re­encryption mix­net, also based on El­Gamal. In 
Neff ’s protocol a re­encryption operation consists in part of taking a ciphertext (a, b) 
and generating another ciphertext (ac, bc), for a randomly chosen c ∈R Zq . Note that 

cthis operation does change the encrypted message from m to m . The motivation 
behind Neff ’s scheme is that he manages to give efficient zero­knowledge proofs, which 
involve only a linear (in n) number of exponentiations. 

2. There are faster protocols that are not zero­knowledge, such as the one proposed by 
Boneh and Golle [BG02] and the one proposed by Jacobsson, Juels and Rivest [JJR02]. 
Both use new techniques to verify correctness. In [BG02], for each mix server, the 
product of a random subset of its inputs is computed, and the mix server is required 
to produce a subset of outputs of equal products. In [JJR02], a new technique is used, 
called randomized partial checking, in which each server provides strong evidence of its 
correct operation by revealing a pseudo­randomly selected subset of its input/output 
relations. 

3.3 An overview of an El­Gamal based Re­encryption Mix­net 

1. Voters vote. 

2. An El­Gamal public key (p, g, y) is produced (in a distributed manner) 

3. The initial encryption phase is performed. 

4. All the mix phases are performed. 

5. Each mix phase produces a proof. The proof includes a non­interactive version of the 
Chaum­Pederson proof, obtained by applying the following Fiat­Shamir type step: the 
challenge is computed by applying some pseudo­random function to the first message 
and to the content of the bulletin board; the seed to the pseudo­random function is 
chosen in a distributed manner. 

6. All the proofs are checked, and if they are correct, then the decryption phase is 
performed by applying a threshold decryption. If a proof of mixi fails, then the bad 
server mixi is skipped and all the mix phases mixi+1, . . . , mixk are redone. 

Note that so far we only showed how to prove that one ciphertext is a re­encryption of 
another ciphertext. We didn’t show how to fully prove that a mix operated correctly. 

References 

[BG02] D. Boneh and P. Golle. Almost entirely correct mixing with applications to voting. 
ACM Conference on Computer and Communications Security 2002: 68­77. 

[CP92] D. Chaum and T. P. Pedersen. Wallet Databases with Observers. CRYPTO 1992: 
89­105. 

18­4 



[JJR02] M. Jakobsson, A. Juels, and R. Rivest. Making Mix Nets Robust for Electronic 
Voting by Randomized Partial Checking. In D. Boneh, ed., USENIX Security ’02, pp. 
339­353. 2002. (Also available as IACR eprint 2002/025.) 

18­5



