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Electronic Voting: Why? 

Of all possible cryptographic applications to study, why choose electronic voting? Both the 
nature and timing of the electronic voting justify this topic of study. 

Timeliness 

The topic of electronic voting is particularly timely. 2004 is the year of the first US presiden­
tial election since the 2000 Florida recount which placed voting equipment in the spotlight. 
It is also the first federal election since the Help America Vote Act of 2002 (HAVA) which 
allocated $3 Billion over 4 years to help States purchase new voting equipment. 

Voting technology tends to follow the latest technology trends, with transitions over 
time from one major technology to another: 

stones → paper → levers → punch cards → mark­sense → computers 

The last transition to computers is underway, but has proven particularly problematic. 
The problems have become clear over the past couple of years, making this issue even more 
relevant. 

Lastly, there are a number of new, fairly radical proposals for changing the way we 
vote. David Chaum’s new “Secret Voter Receipt” scheme and VoteHere’s recently published 
source code are two of the more interesting ones. 

Controversy 

The voting debate is relevant because it has recently become quite controversial, specifically 
on the topic of DRE machines (Direct Recording by Electronics), often called touch­screen 
machines (even though not all of them have touch­screen). The particular questions raised 
about DRE: 

•	 Does it need a Voter Verifiable Paper Audit Trail (VVPAT)? In case of an audit 
inconsistency, what is the authoritative copy of the vote: the paper or the electronic 
record? 
•	 Can we build them securely? 
•	 How can we provide truly private and secure voting for people with disabilities? 

Should we have one technology for all voters or a diverse set of technologies for various 
voter needs? 
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Difficulty 

A cursory look at electronic voting might lead one to think that it’s a trivial security prob­
lem. On the contrary, electronic voting is quite difficult to realize. The security requirements 
for electronic voting are intrinsically contradictory in ways that haven’t been quite resolved 
yet by any cryptographic means. For example, voters should be able to verify that their 
vote was cast as intended, but not be able to prove this to anyone else (the system must be 
“receipt­free”). 

Another complicating factor is that the main user of this application, the voter, needs 
to be treated as a potential adversary. 

Lastly, in any practical setting for electronic voting, one must consider whether the 
hardware and basic software platform can be trusted. The line between user and hardware 
needs to be drawn, whereas most cryptographic protocol definitions tend to ignore the issue 
by assuming some trusted computing base. 

Cryptography Should Be Helpful 

All previously mentioned complications “feel” like they should be solvable using cryptogra­
phy’s usual “bag of tricks.” Thus, cryptography should be helpful. Nevertheless, one must 
consider that an electronic system needs to be more than just technically secure: any new 
system must benefit from broad public acceptance by voters and election officials. 

Requirements 

Election Steps 

An election can be decomposed into a number of precise steps: 

1. Call an Election (periodic?) 
2. Define election parameters: questions / races / candidates 
3. Determine voter eligibility requirements 
4. Register voters 
5. Create/Distribute voter credentials 
6. Create/Distribute ballots 
7. Prepare equipment and poll workers 
8. Verify voter credentials (sign­in)


Consider provisional ballots and fallback authorization mechanisms.

9. Compose ballot 

10. Confirm choices ­ revise? 
11. Cast ballot 
12. Collect ballots 
13. Tally results 
14. Publish results (& voter list) 
15. Audit 
16. Recount 
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Security Requirements 

At all steps in this process, one must respect a number of accepted voting security require­
ments: 

1.	 Democratic 

•	 only eligible voters can vote 
•	 each eligible voter can cast at most one vote (that counts) 

2.	 Private 

•	 No one can tell how a voter actually voted 
(anonymity, at least within large enough cohort/precinct of voters) 
•	 OK (perhaps even mandatory) to publish who voted (though, obviously not 

actual ballot content) 

3.	 Uncoercible 

•	 voter cannot be coerced/bribed to vote a particular way 
•	 voter cannot prove how he voted to another party: receipt­free. 

(Note how this requirement assumes the voter may be an adversary). 

4.	 Accurate

The final tally is the correct sum of cast votes.


•	 cast ballots can’t be altered, deleted, substituted. 
•	 all cast ballots are counted; other (invalid) ballots can’t be added. 

5.	 Verifiable 
Stalin: “He who votes determines nothing; he who counts the votes determines every­
thing.” Thus, we need verifiability of the vote counting process. 

•	 individual verifiability: each voter may verify her vote 
(Note: do you need to reveal your vote in the clear as recourse?) 

•	 representative verifiability: each voter may delegate to a party or other repre­
sentative the task of verifying the vote (without revealing the vote in the clear, 
of course). 

•	 universal verifiability: anyone can verify total. 

6.	 Robust

Small group can’t disrupt election (DOS attacks, complaint procedures, etc...)


7.	 Fairness

No partial results are known before the election is closed.
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Other Requirements 

Beyond security, one should also consider further system requirements: 

1.	 Ease­of­Use/Convenience: 
good User Interface, efficient voting process, and accessibility from “anywhere.” 

2.	 Flexibility:

write­ins, preferential voting


Conflicts! 

We note clear conflicts in the above requirements: 

•	 individual verifiability vs. uncoercibility 
•	 convenience vs. uncoercibility 

Existing Schemes 

A number of existing voting schemes are in use today. These schemes each have advantages 
and disadvantages. With respect to the security goals, here’s how they stack up. (This 
chart is very rough, and its entries debatable.) 

Honest 
Intentions 

Cast as 
Intended 

Counted 
as Cast 

Verifiable 
as Counted 

Y Y Y Y Hand­Counted Paper Ballots 
N? Y Y? Y Absentee / Vote­By­Mail 
Y N? N? N? Lever Machines 
Y Y Y/N? Y Optical Scan 
Y N? N? N DRE (touch­screen) 
N? N? N? N Internet / remote 

The current systems raise a number of points and issues: 

•	 a private polling place is still a strong plus as far as security requirements go 

•	 the difference between performance of systems on “cast as intended” and “verifiable 
as counted” can largely be traced to the presence of a voter­verifiable paper audit trail 
as an official ballot. 

•	 do we need to trust the voting equipment? 

•	 there’s a strong distinction between: 

–	 direct creation/verification of the official ballot 
–	 indirect creation/verification of the official ballot 

Contrary to its name, a DRE system is very much indirect, much like a blind voter 
who must bring a trusted friend to vote for him. 
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¿From these issues arose the Mercuri Proposal [?], where voting happens at polling 
stations with equipment that prints out an official paper ballot which the voter confirms 
and casts. The electronic equipment serves only in the production of this paper ballot. 

Class Schedule 

The goal of the next few classes on voting is the review of existing voting methods that 
involve cryptography including [?, ?, ?]. 

Voting via Mix­Nets 

The Mix­Net Paradigm 

Figure 1: A Mix­Net: Ballots Bi are Randomly Permuted 

The use of mix­nets for voting is initially due to Chaum [?], and has since been used in 
many other schemes [?, ?]. 

The process is diagrammed in figure 1 and works as follows: 

1. n voters create n ballots, B1, B2, . . . Bn 

2. each voter encrypts his ballot, yielding the 0­th level ciphertexts: C1,0, C2,0, . . . Cn,0. 

3. We have t mixes, or mix servers, S1, S2, . . . St. 

4. i­th mix Si takes in �C1,i−1, C2,i−1, . . . Cn,i−1�, secretly permutes their order and either: 

• reencrypts (reencryption mix), or 
• decrypts (decryption or Chaumian mix), 

to obtain �C1,i, C2,i, . . . Cn,i� 

5. the final ciphertext sequence �C1,t, C2,t, . . . Cn,t� may need one round of decryption 
(for a reencryption network). 

6. all outputs of all mixnets are published on a bulletin board and universally readable, 
including the final tally of cleartext ballots. 

Issues 

Trusting Initial Encryption We define Ci,0 = Enc(Bi), and we want a Proof of Knowl­
edge of Bi. This is likely not voter­verifiable because the encryption process is performed 
by a machine, and a human can’t check that Ci,0, the cast vote, is indeed the encryption of 
Bi, the voter’s intention. 

We want to be able to trust the hardware without providing a voter receipt. 
The solutions to this problem are much more eccentric than the typical cryptographic 

techniques: we will study them later in the course. 
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Trusting Server Operation Can we trust the servers to mix properly? One honest Sj 

can protect privacy, but one dishonest Sj� can replace, alter, duplicate votes, even if all 
ciphertexts are published. 

The servers might also collude to violate voter privacy.

We have solutions for this problem with verifiable mixnets.


Math of Mix­Nets 

We have two types of mix­nets: decryption networks and reencryption networks. 

Decryption Networks In a decryption network, each mix server peels off a layer of an 
onion of multiple encryptions of a plaintext. By the end, all layers have been peeled off and 
the plaintext is available. 

More specifically, each server Sj has (PKj , SKj ) for a randomized public­key encryption 
scheme (with semantic security). Each ciphertext is: 

Ci,0 = E(PK1, E(PK2, . . . , E(PKt, Bi) . . .)) 

With such a scheme, all ciphertexts at a given layer must have the same size, other­
wise they are easily traceable across that given mix server. Randomization (necessary for 
semantic security) means ciphertext length grows with t (the randomization is discarded 
after every decryption). 

Reencryption Networks Most reencryption networks use a variant of ElGamal encryp­
tion and reencryption. In ElGamal encryption, we consider the usual group of integers Z∗ 

p 
under multiplication and g, a generator of Z∗.p

p is the secret key. 
y = gx is the public key.


R


x ∈ Z∗ 

E(m) = (gr ,myr ) is the randomized encryption function with r ←− Z∗ 
p−1. 

xD(c1, c2) = (c1 )
−1 ∗ c2 is the decryption function on an ElGamal pair. 

(Note how the randomized factor is divided out: as long as the pair is a correct ElGamal 
pair, decryption is straight­forward). 

We now describe ElGamal reencryption (i.e. re­randomization): 
R

ReEnc(c1, c2) = (c1 ∗ gs, c2 ∗ ys) = (g(r+s),my(r+s)) for s ←− Z∗ 
p−1. 

The reencryption does not affect the decryption process, nor does it require knowledge 
of the secret key! 

Verifiable Mix­Nets 

We will study two approaches to making mix­nets verifiable: 

1. Randomized Partial Checking [?] 
2. Proof­of­Subproduct [?] 
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