6.897: Advanced Topics in Cryptography March 18, 2004

Lecture 13,14: JUC; UC Signatures and Authentication
Lecturer: Ran Canetti Scribed by: Steve Weis and Yoav Yerushalmi

1 Review of Last Week and Outline for This Week

Last week we showed how to realize Fizi in the Foop-hybrid model. We also showed how
to realize any “standard” functionality in several settings, including:

e the F,,4,- hybrid model for semi-honest adversaries,
e the (Fuuth, Fers)- model for Byzantine adversaries,
e the F, s hybrid model for Byzantine adversaries with an honest majority.

This week we will look at the motivation, formulation, proof and applications of Univer-
sal Composition with Joint State (JUC). We will develop a UC formulation for signature
schemes and show its equivalence with CM A-security. Finally, we will look at how to achieve
authenticated communication.

One question which arose from last week’s lectures was whether we really needed ex-
tremely long common reference strings (CRS) to realize Foopr. Indeed, a naive use of CRS
would entail:

e A copy of Fors per copy of Fooum-

e O(k) copies of Foon per copy of Fzk.

e O(r) copies of Fzx per copy of Fop to complete a protocol with 7 rounds.
e O(n) copies of Feop for n parties.

One question is whether it is actually necessary to use so many copies of the CRS.
We could consider a single copy of Fasconm which uses a single CRS. This would not take
advantage of the UC theorem, since we’d have to analyze the security of the entire protocol,
including copies of Fizx and Fop as a single, monolithic unit. As it stands, the UC theorem
is not equipped to handle protocols sharing some joint state.

Another example problem where protocols share some joint state are multiple key-
exchange protocols based on the same signature scheme. That is, multiple key-exchange
protocol instances using the same global parameters, such as public keys.

2 Formalization of Multi-Instance Composition

Taking a more abstract view of the problem, suppose we have:

e A protocol @ in the F-hybrid model that uses multiple copies of some functionality
F. For example, F' could be Fropr and @ the Blum ZK protocol for Hamiltonicity.

13,14-1



e A protocol P that realizes (in a single instance) multiple independent copies of F'.
For example, P could realize Fyrconm-

We want to know whether we can compose these two protocols and maintain security.
To do so, we will now formalize a multi-instance extension of ideal functionalities as follows.

Let F be an ideal functionality. Then a multi-session extension of F', denoted F'F proceeds
as follows:

e F'F runs multiple copies of F. Each copy of F' has its own session identifier ssid.

e F'F expects all of its inputs to be of the form (sid, ssid,...), where sid is the session
id of F'F.

e An incoming message with a given ssid s is routed to the copy of F whose ssid is s.
If no such copy of F exists, F'F' will invoke a new F' and assign it the ssid s.

e Whenever a copy of F' generates some output (ssid, msg), then FF will simply add
its sid to that output and forward (sid, ssid, m) to the intended recipient.

Consider the following two examples:
* Fucowm:

1. Upon receiving (sid, cid, C,V, “commit” , x) from (sid,C) do:
(a) Record (cid, ).
(b) Output (sid, cid, C,V, “receipt”) to (sid, V).
(c) Send (sid,cid, C,V, “receipt”) to S.

2. Upon receiving (sid, cid, “open”) from (sid,C) do:
(a) Output (sid, cid, z) to (sid,V).
(b) Send (sid,cid,z) to S.

This Fieom functionality is essentially the same as F Frop,.

e FFcprs (with distribution D):

1. Upon receiving (sid, ssid, pid, “crs") from (sid, pid) do:

(a) If there is a recorded pair (ssid,v) then output v to (sid,pid) and send
(ssid, pid,v) to the adversary.

(b) Else, choose a value v from D, record (ssid,v) and continue as in step 1.(a).

3 Universal Composition with Joint State (JUC)

The composition operation on protocols with joint state starts with:
¢ A protocol @ in the F-hybrid model (that may run multiple copies of F).

e A protocol P that securely realizes F'F'.

13,14-2



Construct the composed protocol, denotedQF:

e At the first activation of Q¥), each party invokes a copy of P with some fixed sid,
e.g. sid = 0.

e Whenever protocol Q calls a copy of F' with input (sid = (s,x)), Q! calls P with
input (sid = 0, ssid = (s, x)).

e Each output (0,s,y) of P is treated as an output (s,y) coming from the copy of F'
with sid = s.

Theorem 1 (JUC: UC with Joint State) Let Q be a protocol in the F-hybrid model,
and let P be a protocol that securely realizes F'F. Then protocol Q) emulates protocol Q.

In other words, for any adversary A there exists an adversary H that for any environment
Z we have
EXEC{ y 7 =~ EXECyp 4 4

Corollary 1 If Q securely realizes some ideal functionality G, then so does protocol Q.

3.1 Application of JUC

One application of the JUC theorem is in the construction of [CLOS]. In this setting, F' is
FCOM and F'F is FMCOM:

e Can write and realize each functionality (e.g. ZK, C&P, general compiler) as a single
instance,

e Can use the UC theorem to obtain a composed protocol @ in the Fopr-hybrid model.
Protocol Q uses many copies of Foonr

e Can then use the JUC theorem to compose @) with a single copy of the protocol that
realizes Fyscom, thus using a single copy of the CRS.

3.2 Proof of the JUC Theorem

The general proof outline will be to define a protocol @' that is secure in the FF-hybrid
model and show:

1. Protocol Q! is identical to Q’P .
2. Protocol Q'F emulates Q.
3. Protocol Q' emulates Q.

The definition of Q' is fairly straightforward. @' essentially runs @, then prepends its
own identifier to any messages sent by (). More specifically, protocol @’ in the F F-hybrid
model is identical to @) except:

e (' uses a single copy of FF with a fixed sid s’ (For instance s’ = 0 or s’ is the sid of
Q' with some fixed prefix.)

13,14-3



e Any input z sent by @ to copy s of F is replaced with a call (s,s,m) to FF.
e Any output (s, s,y) from FF is treated as an output y coming form copy s of F.

By the UC theorem, protocol Q" emulates Q'. However, Q' F is just another way of
describing Q1 thus QI¥) emulates @Q’. Tt remains to show that Q' emulates Q.

Let A’ be an adversary interacting with @’ in the F F-hybrid model. Construct an adver-
sary A that interacts with @ in the F-hybrid model. It can be verified that EX ECE, ,}’7 wz =

EXEC§ 4 ; for all Z.
Adversary A runs A’:

e Messages sent by A’ to parties running ' are forwarded to the actual parties running

Q.
e Messages from the parties running @ are forwarded to A’.

e For each message (s',s,m) sent by A’ to FF, A sends the message (s, m) to copy s
of F.

e Whenever A gets a message m from a copy of F' with sid = s, it forwards message
(s',8,m) from F'F to A’

e Whenever A’ corrupts a part, A corrupts the same party and reports the obtained
information to A.

4 General Protocols in CRS model

Assume we had a protocol that realizes FFcgrg in the Fogrg-hybrid model, using only a
single instance of Forg. Then it would suffice to construct protocols where each instance
uses its own copy of Fors- For instance, realizing Foopr would be sufficient; we wouldn’t
need FMC’OM-

Several results from [CRO3] are relevant to this setting:

e Any protocol that realizes F'Fors in the Forg-hybrid model using only a single copy
of Fors must be interactive, i.e. each party should send at least one message for each
generation of a new common string.

e Using the Blum 3-move coin-tossing protocol, we can realize F Fgogrg in the Fircom-
hybrid model using only a single copy of Fors.

e Using protocol UCC, we get the desired results. (But could not get rid of the protocol
UCC.)

5 Applications of JUC to Signature-Based Protocols

Another case where multiple protocol instances use the same subroutine are cases of pro-
tocols based on signature schemes. For example, signature-based message authentication,

13,14-4



key-exchange, or Byzantine Agreement. In all of these cases, protocols use long-term sig-
nature keys for multiple protocol sessions. That is, signature keys can be considered joint
state shared among protocols.

Our goal is to define and analyze signature-based protocols for a single session (i.e. single
session-key) and then use JUC to deduce that the multi-session interaction (using a single
long-term signature module) is secure. to do that, we first need to be able to formalize the
signature mechanism as an ideal functionality.

5.1 Digital Signatures as Ideal Functionalities

Digital signatures are typically thought of as a tool within protocols, rather than a “pro-
tocol” by itself. Still, it is useful and instructive to treat digital signatures as a protocol
with a specified ideal functionality. Potential benefits include modularity of analysis, re-
asserting the adequacy of existing security notions, and providing a bridge to formal analysis
of protocols.

The question is how exactly to formalize digital signatures. There are two main ap-
proaches. One is to define signatures as a stand-alone primitive, as in [Can01, CK02, CR03,
BHO03, Can03]. The other is to define signatures as a part of a more complex functionality
that also provides other services, as in [BPW03]. We’ll focus on the stand-alone approach
because it is more modular.

5.2 Attempt 1

The following is our first attempt at defining an ideal functionality for a digital signature
scheme:

4 )

1. On input (sid, “Keygen) from party (sid,S) , register party (sid,S) as the
signer.

2. On input (sid, “sign”,m) from (sid, S) record m.

3. On input (sid, “verify”,m) from any party, return (sid, “yes” /"no") according
to whether m has been recorded.

- )

This definition is too idealized. Any protocol that realizes this functionality will have to
take care of transmitting signatures and public keys between parties. This would not meet
our intuition of a “signature scheme”.

5.3 Attempt 2

The following protocol attempts to resolve the problem by specifically creating a signature
key and a signature string:

13,14-5



4 )

1. On input (sid, “Keygen”) from party (sid,S) , register party (sid,S) as the
signer, AND return to party (sid, S) a public key v selected at random.

2. On input (sid, “sign”,m) from (sid,S) return a random signature s and record
(m, s,v).

3. On input (sid, “verify”, m,s,v") from any party, return (sid, “yes” /"no") accord-
ing to whether (m, s,v’) has been recorded.

- )

It looks as though the functionality is no longer too ideal. In particular since the
signature string and verification key are part of the interface, communicating the values
from one party to another becomes the job of the calling protocol, rather than the job of
the signature scheme. But this formulations still has several problems. For one thing, the
public key in the ideal functionality is a random number. Many real-world systems do not do
this (and we consider them secure). The scheme is also very deterministic. Specifically, the
ONLY accepted signature is the one that was generated by (sid, S) as the triplet (m, s,v).
For some applications, we want digital signature schemes that have multiple valid signatures
for a given message. Finally, the ideal scheme is such that even an invalid signer can’t pick
a 'weak’ signing key.

So in all, we have now made the scheme TOO restrictive. On to our next attempt.

5.4 Attempt 3

We will once again attempt to resolve the previous problems:

4 )

1. On input (sid, “Keygen”) from party (sid,S) , register party (sid,S) as the
signer, forward (sid,S) to A (the simulator/adversary), obtain a public key v
from A and output v to (sid, S).

2. On input (sid, “sign”,m) from (sid, S), forward (sid, m) to A, obtain a “signa-
ture” s from A, output s to (sid, S), and record (m, s, v).

3. On input (sid, “verify”,m, s, v’) from any party, return (sid, f) where:

e If (m,s,v') is recorded then f = 1.
e If S is uncorrupted and (m, s*,v') is unrecorded for any s*, then f = 0.

e Else forward (m, s,v’) to A and obtain f from A.

\ /

First note that the second assignment of f (where S is uncorrupted) ensures that phony
signatures can’t be generated by A, but allows for more than one valid signature for a signed
message.

It almost seems as if we’ve reached a good definition, except that there is still one glaring
problem. Now that we have allowed A the power to decide whether a signature is valid or

13,14-6



not when the signer is corrupt, we have also allowed A to change his mind (for the exact
same signature, he can say “yes” once and “no” at another point). This is not a desirable
feature for a signature scheme.

5.5 Attempt 4

We will make a minor change to the functionality, forcing the system to stick to its decision
once it is made:

4 )

1. On input (sid, “Keygen”) from party (sid,S) , register party (sid,S) as the
signer, forward (sid,S) to A (the simulator/adversary), obtain a public key v
from A and output v to (sid, S).

2. On input (sid, “sign”,m) from (sid, S), forward (sid, m) to A, obtain a “signa-
ture” s from A, output s to (sid, S), and record (m, s,v,1) unless a prior record
(m, s,v,0) exists, in which case output an error message.

3. On input (sid, “verify”,m, s,v’) from any party, return (sid, f) where:

e If (m,s,v',b) is recorded then f = b.
e If S is uncorrupted and (m, s*,v',1) is unrecorded for any s*, then f = 0.

e Else forward (m,s,v') to A and obtain f from A. Record (m,s, v, f)

- )

Sadly, although we’re almost there, there’s still one more minor change we need to make.
The problem with the above protocol is that it doesn’t actually predefine a fixed signer. In
a signature scheme, the signer of a document is a known value, but in the above, other than
claiming to be the role of the signer, nothing forces it. It isn’t clear that only one signer is
allowed.

5.6 Fi,

We will fix this problem by encoding who the signer is within the session ID. That way,
for every signature session, the ’signer’ is well-known to all parties, even if he hasn’t signed
anything yet. This will yield our ideal signature functionality:

13,14-7



/ F stg \

1. On input (sid, “Keygen”) from party (sid,S) , verify sid = (sid', S) otherwise,
ignore input. Forward (sid,S) to A, obtain a public key v from A and output v
to (sid, S). This stage may only be done once.

2. On input (sid, “sign”,m) from (sid,S), where sid = (S, sid') forward (sid, m)
to A, obtain a “signature” s from A, output s to (sid, S), and record (m,s,v,1)
unless a prior record (m, s,v,0) exists (in which case output an error message).

3. On input (sid, “verify”, m, s,v') from any party, return (sid, f) where:

e If (m,s,v’,b) is recorded then f = b.
e If S is uncorrupted and (m, s*,v’,1) is unrecorded for any s*, then f = 0.

e Else forward (m, s,v’) to A and obtain f from A. Record (m, s, v, f)

- )

And voila, we have a working ideal functionality. This is the functionality we will
attempt to achieve. However, it should be noted that this functionality relays all messages
and signatures to the adversary, which means whatever protocol achieves it is not a secret
or anonymous signature scheme.

6 Realizing F;,

It turns out that it is fairly easy to make a real-world protocol that can securely realize Fi;,,.
Given any signature scheme H = (GEN,SIG,V ER), we construct the following protocol
PH:

e When invoked with (sid, “Keygen”) and pid = S ensure that sid = (S, sid'). Now
run (p,v) < GEN(k). Return v to the caller (and keep p private).

e When invoked with (sid, “sign”,m) compute s < SIG(p,m) and return s. We allow
SIG to maintain state between activations.

e When invoked with (sid, “Verify”,m, s,v') return VER(m, s, v")
We show that this scheme is indeed secure:

Theorem 2 A scheme H is existentially unforgeable against chosen message attacks if and
only if the protocol Py securely realizes Fgg.

Recall the definition of security we will use:

Definition 1 a scheme H = (Gen, Sig,Ver) is ezistentially unforgeable against chosen
message attacks (is EU-CMA) if it has the following three properties:

Completeness : For all adversaries F':

Pr(p,’l})(—Gen();m(—F('u) [Ver(m, Sig(pa m)a U) = 1] ~1

13,14-8



Consistency : For all (m,s,v):

Variance[Ver(m,s,v)] ~ 0

Unforgeability : Over all (p,v) + Gen(k), (m*,s*) < FSIG®*)(y) where m* is not one

6.1

that F has asked for a signature of:
Propove[Ver(m*,s*,v) =1] ~ 0

To clarify the above (it is intended to be an interactive system), we allow the adversary
to know the public key, and make polynomially many queries to a signing machine.
After receiving many signatures, he attempts to generate a valid new signature for a
new message. Qur scheme is unforgeable if his chances of doing well are negligible.

Proof that (Py realizes Fy;,) «— (H is EU-CMA secure).

Py realizes Fy;; — H is EU-CMA secure.
For this to be true means we can show that H has the three properties of EU-CMA.
We will therefore go over each property and prove it.

Completeness : To prove this, we will set up a contradiction. Assume that H is
not complete. That means that there exists some adversary for H (we call it
F) that can find a message m whose signature doesn’t verify correctly. So from
that, we can build an environment Z and an adversary A where the environment
instructs the signer to sign m and then verify the signature. In the ideal model,
that message still verifies correctly (verification is independent of H). In the
hybrid model, it will not, and so the environment can distinguish. This leads us
to conclude that Py doesn’t securely realize Fy;y which is a contradiction.

Consistency : To prove, we will use the same trick. Assume that H is not con-
sistent, so the result of the verification function varies. By a similar trick to
the above, we construct an environment that calls for several verifications in a
row of the same message and signature. In the ideal, we always get the same
result, while in the real, we will flip-flop. The environment can distinguish, which
violates the assumption of secure realization of Fy;,.

Unforgeability : Assume there exists a forger G for H. We will once again show
how the environment can distinguish the ideal from the real (and form a contra-
diction). Asnormal behavior, the environment invokes a signer /verifier /adversary
triplet. Additionally, the environment runs the forger G internally. To get a key
to give to G, the environment tells the signer to run keygen (yielding only a
public key v which the environment feeds to G). G now will ask for many mes-
sages m; to be signed. For each such message, the environment will pass it to
the uncorrupted signer to sign. It will get a signature s; for each m;, which it
will hand over to G. Finally, G will generate a pair m*, s* which it claims to
be a valid signature (and is indeed, since we claim G is a forger for H). The
environment will now ask the verifier to verify the signature s*, and output the
bit that the verifier does. Note that in the ideal environment, the final signature

13,14-9



is NOT a valid signature since it was never recorded as such, so it will always
output 0. On the other hand, in the real-world environment, the final signa-
ture IS a valid signature with non-negligible probability, so the environment can
distinguish (and we contradict).

e H is EU-CMA secure — Py realizes Fl;, .
We will again do this through contradiction. Assume Py does not securely realize Fi;.
That means that for any simulator S there is an environment (Z) that can distinguish
between an interaction with the ideal functionality Fy;, and S, and the real protocol
Py and the dummy adversary. Specifically, we will look at the environment that can
distinguish with respect to the following generic simulator S:

— When asked by Fy;, to generate a key, S runs (p,v) < Gen(k) and returns v
(just as per the protocol).

— When asked by Fy;, to generate a signature s on a message m, S runs s <
Sig(p, m) and returns s.

— When asked by Fy;, to verify a signature (m, s, '), S runs f < Ver(m,s,v') and
returns f.

As can be seen, S follows the exact decision behavior of the original protocol Py.

Let B be the event that in a run of Z and S in the ideal model, the signer never
signed m, and yet still an (sid, “Verify”,m, s,v) activation answered with a 1. Tt
can be verified that if event B doesn’t occur, Z’s view of the ideal and real executions
are statistically close (these can be randomized signatures). We know that Z can
distinguish, so B must occur with non-negligible probability. Using this knowledge,
we can now construct a forger G for H (thereby contradicting our assumption that H
is EU-CMA secure).

Here is how G works. It first takes the code for Z and runs it internally:

— When Z attempts to start a signer with “KeyGen”, GG doesn’t start a signer, but
instead feeds Z the output for the signer, that being the value v that G is trying
to break.

— When Z attempts to get the signer to sign a message m, G intercepts this and
passes the m to its signing oracle. It will get a valid signature s, which it will
hand back to Z (looking like the valid signature coming back from the signer).

— When Z attempts to verify a signature (m,s,v), G can check whether (m, s,v)
is a forgery (this is event B). If it is, then it outputs (m,s,v). Otherwise, it
continues to run Z.

— If/When Z asks to corrupt the signer, G aborts.

We know that B occurs with non-negligible probability, so G generates a valid forgery
with non-negligible probability, which is a contradiction on the assumption that H is
EU-CMA secure.

Corollary 2 From the above proof we see that Py is adaptively secure iff it is non-
adaptively secure

13,14-10



Clearly if it is adaptively secure, it is non-adaptively secure (special case). To see the
other direction, simply note G aborts on a “corruption” message from Z irrelevant of
when it happens, and yet our contradiction still holds.

7 Authenticated Communication using Fy;,

We wish to establish an authenticated communication network on top of an unauthenticated
network. Using this, we can provide Fg,;, as an underlying functionality. We will follow
this plan:

e We define a registry functionality F., which allows parties to “register” their public
keys for others to securely retrieve.

o We realize Fpyyp, in the (Freq, Fyig) — hybrid model by:

— Creating a certification functionality Fi.,;+ that provides a binding between sig-
natures and parties.

— Realize Fiepy in the (Freg, Fiig) — hybrid model.
— Realize Fyp in the Fpepp — hybrid model.

e We will then authenticate multiple messages using a single key pair by:

— Defining F F et
— Realize F'F,¢¢ using many calls to Feers.
— Use the JUC theorem to combine.

7.1 The “Public Registry” Functionality F,,

This functionality allows a party to register a value (nominally its public key) to a system
in a way that allows any party to ask for that value:

~ Fro B\

1. When receiving (sid, “register”,v) from party (sid,S), verify that sid =
(S, sid'), send (sid, S,v) to the adversary, and record (S,v).

2. When receiving (sid, “retrieve”,S) from any party, return (sid, S,v) if there is
a record (S,v) else return (sid, S, —).

- )

Note that there is no verification of the public key being anything (no proof of knowledge
of p or the like). Additionally, the way our definition works, the registrant is part of the
sid, so only one person can register their key per functionality.

13,14-11



7.2 The Certification Functionality F,.,,

r Fir N

1. On input (sid, “sign”,m) from (sid,S) where sid = (S, sid'), forward (sid,m)
to A, obtain a “signature” s from A, output s to (sid,S) and record (m,s,1).
Verify that no (m, s,0) record exists.

2. On input (sid, “verify”,m, s) from any party, return (sid, f) where:

e If (m,s,b) is recorded, then f = b.

e If S is uncorrupted and (m, s*,1) is unrecorded for any s*, then f = 0.

e Else forward (m, s) to A and obtain f from A, recording (m, s, f)

N /

Note that Fers is similar to F; except there is no more key generation, and instead it
is all done with respect to the signers identity (which is encoded in the sid).

7.3 Realizing F,.,; in the (F,.,, fu,) — hybrid model
The following is the protocol that realizes the F¢; functionality:

1. At first activation, signer (sid,S) ensures that sid = (S,sid’) and calls Fy;, with
(sid.0, “keygen”), obtains v, and calls Fy., with (sid.1, “register”,v).

2. When activated with input (sid, “sign”,m), (sid, S) verifies sid = (S, sid’) and calls
Fiq with (sid.0, “sign”,m), obtaining a signature s which it outputs.

3. When activated with input (sid, “verify”,m, s) where sid = (9, sid’), the activated
party calls F..qy with (sid.1, “retrieve”, S) obtains the public key v, and calls Fy;,
with (sid.0, “verify”,m, s,v). It outputs the result of that call.

The simulation is perfect for the above (all the smarts/computation are done in the
underlying protocols). Similarly, the security is unconditional.

7.4 Realizing F,,;, in the F..; — hybrid model

The following is the authenticated message transmission functionality Fyp:

e Foutn N\

1. Receive input (sid, S, R, m) from party (sid, S).

N

. Output (sid, S, R,m) to party (sid, R)
3. Send (sid, S, R,m) to the adversary/simulator.
4. halt

13,14-12



And the protocol that achieves it:

1. When activated with input (sid, S, R, m), party (sid, S) calls Fee,y with (S.sid, “sign”, m.R),
obtains a signature s, and sends (sid, S,m, s) to (sid, R).

2. When receiving message (sid, S, m, s), (sid, R) calls Fpery with (S.sid, “verify” , m.R, s).
If the result is 1, then output (sid, S, R, m).

Again the simulation is perfect, and the security is unconditional. Also, although most
real protocol use nonces as part of the message to ensure unique messages, this system uses
sid values, which are supposed to be unique (indeed, a natural way to obtain unique sid’s
is to exchange nonces and concatenate the nonces into the sid).

Next lecture we will discuss how to achieve authenticate multiple messages using a single
verification key (by using the JUC theorem).

References

[BHO3] Michael Backes and Dennis Hofheinz. How to Break and Repair a Universally
Composable Signature Functionality. 2003.

[BPWO03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Universally Composable
Cryptographic Library. 2003.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. FOCS 2001, pages 136-145, 2001.

[Can03] Ran Canetti. Bib file pending. 2003.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key ex-
change and secure channels. In EUROCRYPT 2002, pages 337-351, 2002.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Advances
in Cryptology - CRYPTO 2003, pages 265—281, 2003.

13,14-13



