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6.895 Essential Coding Theory November 24, 2004 

Lecture 21 
Lecturer: Madhu Sudan Scribe: Paul Valiant 

1 Trevisan’s Extractor 

The following is Trevisan’s construction of an extractor. Consider a code C : {0, 1}n that is ∩ {0, 1}N 

a ( 1 − �, L) soft-decision list decoder for some list size L = poly( n 
� ). Note that we have seen explicit2 

constructions for codes with N = 
�
n 
8 and L � N . 

Recall that a (m, t, l, a)-design is a collection of sets S1, ..., Sm with Si ≈ [t], Si = l, and the condition | |
that for every i, j, we have 

Si ≤ Sj � a.| |
We note that Trevisan shows these designs exist if 

l2 log m 
exp .t � 

a a 

n mFor l = log2 N we define an extractor E : {0, 1} as× {0, 1}t ∩ {0, 1}

E(x, y) = C(x)y1 , C(x)y2 , ..., C(x)ym 

where yi is the restriction of y to the set Si, which is a string in {0, 1}l and can be interpreted to be an 
integer in [N ]. 

We provide a proof sketch for the following claim. 

Claim 1 E is a (k, �) extractor provided � < 2m and k > m2k + O(log n 

Proof (Sketch) Assume for the sake of contradiction that A �-distinguishes a random x � X for some X 
with |X = 2k , namely |

Pr [A(E(x, y), y) = 1] > Pr [A(z, y) = 1] + �, 
x�X,y�Ut z�Um ,y�Ut 

where Uk represents the uniform distribution on strings in {0, 1}k . 
Using standard Markov arguments, one can show that there exists some set X � ≈ X of size at least 

2 
� X = � 2k such that A 2 -distinguishes every x � X � .2 | 2 2 

We now show that if one can 2 -distinguish m bits of E(x, y) from the uniform distribution, then one can 
-distinguish a single bit from uniform. We use a technique called hybridization.2m 
Define distributions D0, ..., Dm as follows: for fixed x and random y � Ut consider the m pseudo-random 

bits of E(x, y) = (C(x)y1 , ..., C(x)ym ). Further, let b1...bm be m truly random bits. Define the distribution 
Di by the distribution of 

(C(x)y1 , ..., C(x)yi −1, bi+1, ..., bm). 

Let 
def 

pi = Pr [A(z, y) = 1]. 
(z,y)�Di 

Note that by definition 

pm − p0 > . 
2 
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Further, we may expand this into a telescoping sum as 

< pm − p0 = pi − pi−1,
2 

i 

which implies that for some i, 

pi+1 − pi > . 
2m


Thus for each x � X � ,

2 

E [A(C(x)y1 , ..., C(x)yi , bi+1, ..., bm) − A(C(x)y1 , ..., C(x)yi−1 , bi, ..., bm)] > , 
y,b 2m 

from which we conclude that for any x there exists a suffix bi+1, ..., bm such that the above equation 
holds. Further, for some specific suffix bi+1, ..., bm the set of strings x for which the above equation holds 

� � 2k−mX � ,i,bi+1 ,...,bm , is at least 2−m 
�X � � 

2 . 
2 2 

Similarly, the above bound is an average over all y, but we are concerned only with the digits of y that 
help determine the bit C(x)yi , namely those digits of y indexed by elements of the set Si. Thus, as above, 
we conclude that for any x there exists an assignment to y [t]−Si such that we can distinguish x as above. |
We would like to claim as above that a large set of values of x may be distinguished by the same y. However, 
we have the problem that there are way too many possible values for y for such a pidgeonhole arguement to 
work. 

Recall that we have constructed a distinguisher A� such that for every x � X � ,i,bi+1 ,...,bm , A� ­
2 2m 

distinguishes 
(C(x)y1 , ..., C(x)yi−1 , bi, y) 

from 
(C(x)y1 , ..., C(x)yi , y). 

Thus, instead of finding a set of x that is distinguished by y [t]−Si , we can find a set of x that is distinguished |
by the same functions (C(x)y1 , ..., C(x)yi−1 ), for any values of C(x). Note that this is not as bad as it 
appears, since we may define each C(x)yk by its values for each assignment to 

y Si ≤ Sk .|

Since by definition 
Si ≤ Sk � a,| | 

we need only define 2a values of C(x)yk . Thus (C(x)y1 , ..., C(x)yi−1 ) is determined by m2a values. 
Now we can apply the pidgeonhole principle to conclude that there is a distinguisher A�� and a set 

X � ,i,bi+1 ,...,bm,{C(x)y<i } of size at least � 2k−m−m2a 
on which A�� -distinguishes (C(x)yi , yi) from (bi, yi)

2 2 2m 
for random bi, yi. 

Recall that by definition, an �-distinguisher only exists if the statistical difference between the quantities 
being distinguished is at least �. Further, note that yi represents a uniformly random integer in [2k ], so the 
statistical difference 

||(C(x)yi , yi) − (bi, yi)|| 
equals 

� 1 � 
E 2 �E[C(x)j − ] . 

j�R [2k ] 
� 
x 2 

If we define the word d to take for each j the value of the majority of the values in C(x)j then we can rewrite 
the statistical difference equivalently as 

1 1 
E[ d − C(x) ],||(C(x)yi , yi) − (bi, yi)|| =

2 
− 

2k x 
| |
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just 1 minus the expected Hamming distance of words in X � ,i,bi+1 ,...,bm,{C(x)y<i } from d.2 2 

Since the �-distinguisher is not given our choice of x, and further, can distinguish (C(x)yi , yi) from random 
for any x � X � ,i,bi+1 ,...,bm,{C(x)y<i }

, we have that all words in X � ,i,bi+1 ,...,bm,{C(x)y<i } must lie within distance 
2 2 

1 � 
2 − of d. 2m 

However, provided 2m > � where C was defined to correct a 1 
2 −� fraction of errors, there can be at most 

L codewords that lie within distance 1 of d, and we have the desired contradiction provided that 2m2 − 

X � ,i,bi+1 ,...,bm,{C(x)y<i }
| � L. 

2
|

Above, we have the bound 

|X � ,i,bi+1 ,...,bm,{C(x)y<i }
| � 

2
2k−m−m2a 

, 
2 

from which we conclude that if 


 �� m 

k > m2a + log O 

then we have a (k, �) extractor, as desired. 

We now compute some parameters of the above construction. 
Suppose we wish to construct a (k, �) extractor {0, 1}n ×{0, 1}t ∩ {0, 1}m where k = 

∈
n, and m = k1−� 

for some �. From above, we can construct extractors for 

k 
2a ≥ 

m 
= k� , 

implying a ≥ � log k. Also, for our error-correcting code, L ≥ N = 2l, so l ≥ log N . Recall that we could 
construct designs for 

l2 log m 
exp .t � 

a a 

Thus, we have 

l2 log m 
expt ≥ 

a a 

log2 N log k 
exp≥ 

� log k � log k 

O(log2 k) 
O(1) = O(log k).≥ 

� log k 

Thus we use only logarithmic additional randomness. We note that we have seen an existence argument 
for an extractor that uses 

t = log2 n + O(1) 

additional randomness, while Trevisan’s extractor is a construction requiring only 

t = O(log n) 

additional randomness. 
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2 The Ta-Shma, Zuckerman, Safra extractor 

Let n be the length of the quasi-random source string, and let q ≥ ∈
n be prime. 

l 1
2 −constructed so as to be ( �, L 

We will use a two level

construction for the extractor, with a small inner code Csmall : Fq ∩ {0, 1}

list decodable used to encode elements in the field Fq .


The “outer” component of the construction is to consider the length-
n,

∈ n input string as specifying the 
coefficients of a bivariate polynomial P over Fq of degree (

∈
n). For now, it does not matter whether 

The extractor uses the additional randomness to generate an ordered pair 
(

− 1.the input string is only 0 
a, b) � [

∈
n] × [

∈
n] and an index j � [l]. The output of the extractor is 

E(P, (a, b), j) = Csmall(P (a, b))j , ..., Csmall(P (a + m − 1, b))j , 

where m is the length of the desired output. 
We present a heuristic sketch of some of the properties of this extractor. This is covered in more detail 

in the next lecture. 
As for the Trevisan extractor, we suppose for the sake of contradiction that there exists a function A 

that �-distinguishes the output of this extractor for P drawn randomly from some X of size at least 2k . As 
above, by Markov arguments we conclude that A is an 2 x � X �-distinguisher for each � X �for some of size 

2 2 

at least � 2k .2 
Using hybridization arguments similar to those used in the case for the Trevisan extractor, we conclude 

that there exists a predictor B for P (a, b) given (P (a − i, b), ..., P (a − 1, b), a, b) where i < m. Specifically, 

B(P (a − i, b), ..., P (a − 1, b), a, b) = P (a, b) 

with probability �� over a, b, for every P � X � where X � is large. This will provide the desired contradiction. | |
Essentially, we show that given the ability to predict values of P , in addition to the fact the P is of low 

degree in any linear combination of x and y, we can “list-decode” P given only a small amount of extra 
“free” values of P . We then apply the pidgeonhole principle to show that there is a specific set of free values 
for which we have a large fraction of the polynomials in X � still feasible, which contradicts the fact that we 
can list-decode from these free values to a small set of possible polynomials. 

We describe briefly how the fact that P is a bivariate polynomial helps us to form a small list of possible 
polynomials given a few free values. As noted above, the fact that P is of degree at most 

∈
n in x and y 

implies that the degree of P along any line in F2 is also at most 
∈

n. We now have two orthogonal prediction q 
methods: we can predict P (a, b) given the previous i values on its row, and we can list-decode P on a whole 
line given some fraction of its values on that line. Our technique will be to evaluate P on i parallel lines, 
then use our predictor B to predict P on the following line with high probability, and repeat until we have P 
on every line. One can show by a Chebyshev argument that for some choice of initial line, the set of points 
for which the predictor B works is distributed fairly evenly along the lines. Thus we can list-decode P on 
the whole region, yielding the desired contradiction. 
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