
6.895 Essential Coding Theory November 15, 2004

Lecture 18
Lecturer: Madhu Sudan Scribe: Kyomin Jung

1 Overview

In this lecture we will introduce and examine some topics of Pseudo-randomness and we will see some
applications of coding theory to them. Especially we will define l-wise independent random number
generator function G and construct it. And then we will define and examine �-almost l-wise independent
G, and �-biased G. And finally we will give a construction of a �-biased space G using some results of
coding theory.

2 Use of randomness

Usually a randomized algorithm A takes (x, y) as input where x is “real” input and y is a random string
independent from x. And we hope that for some desired function f(x), Pr[A(x, y) = f(x)] is higher

nthan some criteria, where probability is taken over the distribution of y ≤ {0, 1} . Usually we assume
that each bit of y is uniformly and independently distributed. Then how can we obtain such random
string y? We may obtain y by physical sources of randomness, for example, ”Zener Diode”. But in many
situations generating randomness by physical source may be very expensive. So computer scientists try
to design algorithm that use a few random inputs and generates ’Pseudo-random’ string that is pretty
longer in size than its input.

3 Pseudo-randomness

Suppose that we are given a randomized algorithm A that satisfies

3
Pry�{0,1}n [A(x, y) = f(x)] ∃

2
(1)

One may hope to find a G : {0, 1}t ≥ {0, 1}n satisfying

2
Prs�{0,1}t [A(x, G(s)) = f(x)] ∃ − �. (2)

3

For small �. Here, We assume that s ≤ {0, 1}t has uniform distribution.

• Question: For sufficiently small � > 0, does there exist G satisfying (2) for every A?

• The answer is No.

(Fix G : {0, 1}n−1 ≥ {0, 1}n . Then �S ≤ {0, 1}n such that |S| = 2n−2 and

1
Prs�{0,1}n−1 [G(s) ≤ S] ∃

2
. (3)

Let x = ⊆ and Let A(x, y) = 1 if y ≤ S, and A(x, y) = 0 otherwise.
Then Pry�{0,1}n [A(y 3) = 0] = but Pr4 s�{0,1}t [A(G(s � 1

2 .))) = 0]

18-1

So we may try to pick a broad class of Algorithms W and have G work for every A ≤ W . If we can
do that for W = {all polynomial time algorithms} or W = {all polynomial sized circuits}, it would be
nice. But we don’t know whether they have such G. For next W ’s it is known that they have such G’s.

• C = {algorithms that depend on limited independence}

• C = {algorithms that perform “linear tests”}

In this lecture, we will deal with the first case.

4 l-wise independence

Definition 1 We say G : {0, 1}t ≥ {0, 1}n is l-wise independent if �T ∀ [n], |T | = l, �b1, b2, . . . , bl ≤
{0, 1},

Prs�{0,1}t [G(s)|T = (b1, b2, . . . , bl)] = 2−l . (4)

When W = {algorithms that depend on less than or equal to l independence}, l-wise independent G
works for every A ≤ W .

To construct G that is l-wise independent, Let C be a [n, t, ?]2 linear code. s.t. C� is a [n, n−t, l+1]2

linear code.

Claim 2 x →≥ C(x) is a l-wise independent generator.

(For the proof of claim 2, See problem set 1, problem 4.)

Let C� be a BCH code with distance (l + 1). Then, C� is a [n, n− ∈ 2
l ∅ log n, l + 1] code. So C is a

[n, ∈ 2
l ∅ log n, ?] code. And we obtain l-wise independent G s.t.

2G : {0, 1}� 1 ⊥logn ≥ {0, 1}n (5)

For a fixed l, t = ∈ 1 ∅log n is polynomial over n. So it gives a polynomial sized sample space {0, 1}t for2
all constant l.

5 �-almost l-wise independence & �-biased space

Sometimes l-wise independence is “stronger” than what we need. Let � be a positive real number.

Definition 3 G : {0, 1}t ≥ {0, 1}n is �-almost l-wise independent if the following holds �T ∀ [n], |T | = l
and �A : {0, 1}l ≥ {0, 1},

|Prs�{0,1}t [A(G(s)|T) = 1] − Pry�{0,1}l [A(y) = 1]| � � (6)

Definition 4 G is �-biased if for every non-trivial linear function A : {0, 1}n ≥ {0, 1}, if is the case
that

|Pry�{0,1}n [A(y) = 1] − Prs�{0,1}t [A(G(s)) = 1| � �. (7)

Note that for every nontrivial linear A, Pry�{0,1}n [A(y) = 1] = 1
�

i�TA
yi. So, (7) becomes

2 , and there exist TA ∀ [n] s.t. A(y) =

1 1
− � � Prs�{0,1}t [A(G(s)) = 1] � + � (8)

2 2

Proposition 5 Every �-biased generator also yields a 2l�-almost l-wise independent generator for all l.

We will not prove this proposition here. Now suppose that we want a
n
1 -almost log n -wise independent 2

1family. For � =
n
1
3 , if we are given �-biased G, by setting l=log n,G is a

n2 -almost log n-wise independent
generator as we desired. So now we need to construct a � =

n
1
3 -biased space G.

18-2

6 construction of � -biased space G

Let N = 2t and suppose that we are given [N, n, (1 − �)N]2 linear code C with condition that its 2
nmaximum weight(number of 1’s) codeword has weight at most (1 + �)N . Suppose further that N =
�3 .2

Let n × N matrix F be the generator matrix of C. Let j : {0, 1}t ≥ [N] be a 1-1 correspondence. For
s ≤ {0, 1}t , 0 � i � n ,define

G(s)i = Fj(s),i. (9)

Then by the property of C, for any nonempty T ∀ [n],

1
− � � P rs�{0,1}t [

G(s)i = 1] �

1
+ �. (10)

2 2
i�T

So, G is an �-biased space.

n 1For � = 1
3 , N =

�3 = n10 So, if t =log N = 10log n then we can obtain -almost log n -wise2n n

independent family.

On the contrary to the Pseudo-random generator, random number extractor extracts “pure” random
strings from “contaminated” random sources. Here contaminated means that it is far from uniform
distribution. It takes (x, y) as input where x is contaminated random string and y is pure but short
random string. Using x and y, extractor tries to get its output z near to uniform distribution. Generally
z is a rather shorter string than x. In the next lecture, we will talk about random number extractor.

18-3

