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1 Overview 

In this lecture we will introduce and examine some topics of Pseudo-randomness and we will see some 
applications of coding theory to them. Especially we will define l-wise independent random number 
generator function G and construct it. And then we will define and examine �-almost l-wise independent 
G, and �-biased G. And finally we will give a construction of a �-biased space G using some results of 
coding theory. 

2 Use of randomness 

Usually a randomized algorithm A takes (x, y) as input where x is “real” input and y is a random string 
independent from x. And we hope that for some desired function f(x), Pr[A(x, y) = f(x)] is higher 

nthan some criteria, where probability is taken over the distribution of y ≤ {0, 1} . Usually we assume 
that each bit of y is uniformly and independently distributed. Then how can we obtain such random 
string y? We may obtain y by physical sources of randomness, for example, ”Zener Diode”. But in many 
situations generating randomness by physical source may be very expensive. So computer scientists try 
to design algorithm that use a few random inputs and generates ’Pseudo-random’ string that is pretty 
longer in size than its input. 

3 Pseudo-randomness 

Suppose that we are given a randomized algorithm A that satisfies 

3 
Pry�{0,1}n [A(x, y) = f(x)] ∃ 

2 
(1) 

One may hope to find a G : {0, 1}t ≥ {0, 1}n satisfying 

2 
Prs�{0,1}t [A(x, G(s)) = f(x)] ∃ − �. (2)

3 

For small �. Here, We assume that s ≤ {0, 1}t has uniform distribution. 

• Question: For sufficiently small � > 0, does there exist G satisfying (2) for every A? 

• The answer is No. 

( Fix G : {0, 1}n−1 ≥ {0, 1}n . Then �S ≤ {0, 1}n such that |S| = 2n−2 and 

1 
Prs�{0,1}n−1 [G(s) ≤ S] ∃ 

2 
. (3) 

Let x = ⊆ and Let A(x, y) = 1 if y ≤ S, and A(x, y) = 0 otherwise. 
Then Pry�{0,1}n [A(y 3) = 0] = but Pr4 s�{0,1}t [A(G(s � 1 

2 .))) = 0] 
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So we may try to pick a broad class of Algorithms W and have G work for every A ≤ W . If we can 
do that for W = {all polynomial time algorithms} or W = {all polynomial sized circuits}, it would be 
nice. But we don’t know whether they have such G. For next W ’s it is known that they have such G’s. 

• C = {algorithms that depend on limited independence} 

• C = {algorithms that perform “linear tests”} 

In this lecture, we will deal with the first case. 

4 l-wise independence 

Definition 1 We say G : {0, 1}t ≥ {0, 1}n is l-wise independent if �T ∀ [n], |T | = l, �b1, b2, . . . , bl ≤ 
{0, 1}, 

Prs�{0,1}t [G(s)|T = (b1, b2, . . . , bl)] = 2−l . (4) 

When W = {algorithms that depend on less than or equal to l independence}, l-wise independent G 
works for every A ≤ W . 

To construct G that is l-wise independent, Let C be a [n, t, ?]2 linear code. s.t. C� is a [n, n−t, l+1]2 

linear code. 

Claim 2 x →≥ C(x) is a l-wise independent generator. 

(For the proof of claim 2, See problem set 1, problem 4.) 

Let C� be a BCH code with distance (l + 1). Then, C� is a [n, n− ∈ 2 
l ∅ log n, l + 1] code. So C is a 

[n, ∈ 2 
l ∅ log n, ?] code. And we obtain l-wise independent G s.t. 

2G : {0, 1}� 1 ⊥logn ≥ {0, 1}n (5) 

For a fixed l, t = ∈ 1 ∅log n is polynomial over n. So it gives a polynomial sized sample space {0, 1}t for2 
all constant l. 

5 �-almost l-wise independence & �-biased space 

Sometimes l-wise independence is “stronger” than what we need. Let � be a positive real number. 

Definition 3 G : {0, 1}t ≥ {0, 1}n is �-almost l-wise independent if the following holds �T ∀ [n], |T | = l 
and �A : {0, 1}l ≥ {0, 1}, 

|Prs�{0,1}t [A(G(s)|T ) = 1] − Pry�{0,1}l [A(y) = 1]| � � (6) 

Definition 4 G is �-biased if for every non-trivial linear function A : {0, 1}n ≥ {0, 1}, if is the case 
that 

|Pry�{0,1}n [A(y) = 1] − Prs�{0,1}t [A(G(s)) = 1| � �. (7) 

Note that for every nontrivial linear A, Pry�{0,1}n [A(y) = 1] = 1 
�

i�TA 
yi. So, (7) becomes 

2 , and there exist TA ∀ [n] s.t. A(y) = 

1 1 
− � � Prs�{0,1}t [A(G(s)) = 1] � + � (8)

2 2 

Proposition 5 Every �-biased generator also yields a 2l�-almost l-wise independent generator for all l. 

We will not prove this proposition here. Now suppose that we want a 
n
1 -almost log n -wise independent 2 

1family. For � = 
n
1 
3 , if we are given �-biased G, by setting l=log n,G is a 

n2 -almost log n-wise independent 
generator as we desired. So now we need to construct a � = 

n
1 
3 -biased space G. 
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6 construction of � -biased space G 

Let N = 2t and suppose that we are given [N, n, ( 1 − �)N ]2 linear code C with condition that its 2 
nmaximum weight(number of 1’s) codeword has weight at most ( 1 + �)N . Suppose further that N = 
�3 .2 

Let n × N matrix F be the generator matrix of C. Let j : {0, 1}t ≥ [N ] be a 1-1 correspondence. For 
s ≤ {0, 1}t , 0 � i � n ,define 

G(s)i = Fj(s),i. (9) 

Then by the property of C, for any nonempty T ∀ [n], 

1 
− � � P rs�{0,1}t [


 
G(s)i = 1] � 

1 
+ �. (10)

2 2 
i�T 

So, G is an �-biased space. 

n 1For � = 1 
3 , N = 

�3 = n10 So, if t =log N = 10log n then we can obtain -almost log n -wise2n n

independent family. 

On the contrary to the Pseudo-random generator, random number extractor extracts “pure” random 
strings from “contaminated” random sources. Here contaminated means that it is far from uniform 
distribution. It takes (x, y) as input where x is contaminated random string and y is pure but short 
random string. Using x and y, extractor tries to get its output z near to uniform distribution. Generally 
z is a rather shorter string than x. In the next lecture, we will talk about random number extractor. 
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