6.895 Essential Coding Theory November 15, 2004

Lecture 18
Lecturer: Madhu Sudan Scribe: Kyomin Jung

1 Overview

In this lecture we will introduce and examine some topics of Pseudo-randomness and we will see some
applications of coding theory to them. Especially we will define [-wise independent random number
generator function G and construct it. And then we will define and examine §-almost [-wise independent
G, and e-biased G. And finally we will give a construction of a e-biased space G using some results of
coding theory.

2 Use of randomness

Usually a randomized algorithm A takes (x,y) as input where x is “real” input and y is a random string
independent from z. And we hope that for some desired function f(z), Pr[A(z,y) = f(z)] is higher
than some criteria, where probability is taken over the distribution of y € {0,1}". Usually we assume
that each bit of y is uniformly and independently distributed. Then how can we obtain such random
string y? We may obtain y by physical sources of randomness, for example, ” Zener Diode”. But in many
situations generating randomness by physical source may be very expensive. So computer scientists try
to design algorithm that use a few random inputs and generates 'Pseudo-random’ string that is pretty
longer in size than its input.

3 Pseudo-randomness

Suppose that we are given a randomized algorithm A that satisfies

Prycioyn[Alz,y) = f(z)] >
One may hope to find a G : {0,1} — {0, 1}" satisfying

2

ProeqoylA(z,G(s)) = f(2)] 2 5 —« (2)

For small e. Here, We assume that s € {0,1}* has uniform distribution.
e Question: For sufficiently small € > 0, does there exist G satisfying (2) for every A?

e The answer is No.
(Fix G : {0,1}"~! — {0,1}". Then 35 € {0,1}" such that |S| = 2"~2 and
: (3)

Let x = () and Let A(z,y) =1ify € S, and A(z,y) = 0 otherwise.
Then Pryeqo,13»[A(y) = 0] = % but Precio13[A(G(s)) = 0] < %)

Prycqoyn-1[G(s) € S] >

| =

18-1

So we may try to pick a broad class of Algorithms W and have G work for every A € W. If we can
do that for W = {all polynomial time algorithms} or W = {all polynomial sized circuits}, it would be
nice. But we don’t know whether they have such G. For next W’s it is known that they have such G’s.

e C = {algorithms that depend on limited independence}
e C = {algorithms that perform “linear tests”}

In this lecture, we will deal with the first case.

4 l-wise independence

Definition 1 We say G : {0,1}* — {0,1}" is I-wise independent if VT C [n], |T| =1, ¥b1,ba,..., b €
{0,1},
Procioay[G(s)|r = (b1,ba,... by)] =270 (4)

When W = {algorithms that depend on less than or equal to [independence}, I-wise independent G
works for every A € W.

To construct G that is [-wise independent, Let C be a [n, t, ?]> linear code. s.t. Ctisa [n,n—t,1+1],
linear code.

Claim 2 z +— C(z) is a l-wise independent generator.

(For the proof of claim 2, See problem set 1, problem 4.)

Let C* be a BCH code with distance (I +1). Then, C* is a [n,n — | L] log n,l + 1] code. So C is a
[n, [£] log n,?] code. And we obtain {-wise independent G s.t.

G : {0,1}L2lleon 10 137 (5)

For a fixed [, t = | §]log n is polynomial over n. So it gives a polynomial sized sample space {0, 1} for
all constant [.

5 J¢-almost l-wise independence & e-biased space

Sometimes [-wise independence is “stronger” than what we need. Let § be a positive real number.

Definition 3 G : {0,1}* — {0,1}" is §-almost l-wise independent if the following holds VT C [n],|T| =1
and VA : {0,1}! — {0,1},

|P7“se{0,1}t[A(G(3)|T) =1] - Prye{O,l}l[A(y) =1]| <9 (6)
Definition 4 G is e-biased if for every non-trivial linear function A : {0,1}" — {0,1}, if is the case
that

|Pryeqoyn[A(y) = 1] = Prsefoy [A(G(s)) = 1| <e. (7)
Note that for every nontrivial linear A, Pryeqo,13»[A(y) = 1] = %, and there exist T4 C [n] s.t. A(y) =
Dicr, vi- So, (7) becomes

5~ €< PreAG(s) =11 < 5 +e ®)

Proposition 5 FEvery e-biased generator also yields a 2'e-almost l-wise independent generator for all l.

We will not prove this proposition here. Now suppose that we want a # -almost log n -wise independent

family. For e = %, if we are given e-biased G, by setting [=log n,G is a n%—almost log n-wise independent
1

generator as we desired. So now we need to construct a € = —z-biased space G.

18-2

6 construction of ¢ -biased space G

Let N = 2! and suppose that we are given [N,n, (% — €)N]2 linear code C with condition that its
maximum weight(number of 1’s) codeword has weight at most (3 + €)N. Suppose further that N = 4.
Let n x N matrix F be the generator matrix of C. Let j : {0,1}* — [N] be a 1-1 correspondence. For
s € {0,1}1,0 <i <n ,define

Then by the property of C, for any nonempty 7' C [n],
L occp DG =1<2+ (10)
9 €= Tse{0,1}t N S); = =9 €.

So, G is an e-biased space.

For e = 4 N = & = n'% So, if t =log N = 10log n then we can obtain -% -almost log n -wise
n € n
independent family.

On the contrary to the Pseudo-random generator, random number extractor extracts “pure” random
strings from “contaminated” random sources. Here contaminated means that it is far from uniform
distribution. It takes (x,y) as input where x is contaminated random string and y is pure but short
random string. Using x and y, extractor tries to get its output z near to uniform distribution. Generally
z is a rather shorter string than x. In the next lecture, we will talk about random number extractor.

18-3

