proof relax relax

6.895 Essential Coding Theory October 27, 2004

Lecture 13
Lecturer: Madhu Sudan Scribe: Alexey Spiridonov

1 Motivation

Today’s lecture’s goal is to describe, informally, a family of codes that achieve better-than-random
performance. This lecture does not describe these codes either accurately or completely; much extra
reading is necessary to understand this material. While they are also incomplete, it may be helpful to
refer to Jonathan Kelner’s notes from 2002 [1].

In a previous lecture, we have shown that the Gilbert-Varshamov bound (obtained by a random
construction) guarantees the existence of a family of codes such that

1
5:@—0(D—R
log, ¢
The Singleton bound, on the other hand, tells us that every family of codes is limited by § < 1 —
R. Therefore, the above construction approaches the optimum as ¢ grows. However, Plotkin’s bound
restricts the rate at which any family of codes can approach the Singleton bound:

1
R+—-L §<1=>R+6<1— -
g—1 q

The Gilbert-Varshamov construction requires an alphabet exponentially large in n in order for the
distance to have be ﬁ away from Singleton. (unlike Plotkin, which permits a linear dependence). The
nonconstructive nature of the Gilbert-Varshamov bound aside, this slow convergence makes it impractical
to get codes that are very close to the Singleton bound.

The codes in this lecture are [n, k, (1 — \/51_1)n — k|4 codes; now, for O(my Convergence, we only need
an alphabet quadratic in m; this is much better. It is an open problem whether the “defect” in the

distance can be improved to % to make Plotkin’s bound tight.

1

2 Algebraic Geometry Codes

For the rest of the lecture, we will be working over the field Iy, with ¢ a prime power. The codes we’ll
construct derive from Reed-Solomon (RS) codes, and share the essential mechanics. Our message space
will be a subspace M of the m-variable polynomials of F;: M C F[z1,..., 2] (subspace means that M
is closed under addition and multiplications by scalars from the field). We will encode a polynomial by
evaluating it at a subset S of points of Fy (rather than the whole space, as in RS codes).

In order to get an efficient code, we want to make dim M relatively larger, |S| relatively smaller,
and we are also looking to maximize the code’s distance. Since it’s a linear code, rather than look for
the minimum number of places two polynomials’ encodings differ, we can get the distance from the
maximum number of zeros any p € M can have on S.

These codes are called “alebgraic geometry codes” because the sets S we will pick will be wvarieties,
objects that algebraic geometry studies. A wariety V(p1,...px) C Fy' is the set of common zeros of the
polynomials p;:

V(p1,.-pe) = {x € F i pi(z) = 0V1 <4 < k}.

13-1

3 A Concrete Example

We will make a [19, 6, 13]13 code. With a Reed-Solomon code, we would be able to get [19, 6, 14]19 which
gets us 1 extra distance at the expense of a larger alphabet. Neither is unambiguously better — it’s a
tradeoft.

First off, we choose ¢ = 13 and m = 2. We let M = span{l,z,y, 22, zy,y?} C Fi3][z,y] be the
2-variable monomials of degree < 2. Take S = V(R), the set of zeros of the polynomial

R(z,y) = y* — 2(z — Da(z + 1).

Since the domain of the polynomial has just |F%;| = 169 points, one can easily see by enumeration that
the |S| = 19. There are ways to speed up the computation of these roots, but in most applications, the
search space is small, and the search only needs to be done once.

So, in our code, k = dim M = 6 and n = |S| = 19. It remains to find the minimum distance d. It
is achieved by a non-zero polynomial p € M which has the most roots in S. In other words, we want
to find d = n — max |V (p, R)|: the maximum number of zeros that p € M can have in common with R
without being identically zero. Since we want d maximized, a scenario we want to avoid having all zeros
of p fall in S. This would happen, for instance, if p divided R. Luckily, R doesn’t factor (is irreducible).
Intuitively, if 0 # f were to match a lot of zeros of R, it would need to approximate it well. However,
polynomials in f have degree at most 2, while R has degree 3, so this shouldn’t happen if p t R. The
following theorem makes this intuition precise.

Theorem 3.1 (Bezout). Let A(z,y) be a polynomial of degree da, and B(x,y) be a polynomial of
degree dp (both nonzero). If |V (A, B)| > dadp, then A and B have a nontrivial common factor.

Proof. We only sketch an idea for a proof. This might not be the best approach for turning it into a
formal argument; it’s main intention is to give a flavor of the subject. We want to compute a quantity
called the resultant polynomial with respect to y:

r(z) = p(z,y) Az, y) + q(z,y)B(z,y),

where p and ¢ are polynomials in x,y chosen so that r does not depend on y. We can pick find such an
r(z) Z 0 of degree < dadp, unless A and B have a common factor containing y. Now, if we pretend all
common roots of A and B have distinct = values, then there can’t be more than d4dg of them (otherwise
the resultant would be zero, which implies that both original polynomials are zero); from this, it can be
concluded that A and B cannot have zeros with d4dp distinct coordinates. Since A and B don’t have
a common factor, one should always be able to find a change of coordinates (u = ax + by, v = cz + dy)
to get all roots to have distinct coordinates. Thus, we would obtain the required bound on V (A, B). O

From the theorem, it follows that no p € M has more than 6 roots in S, so the minimum distance is
d =19 — 6 = 3. Thus, we have the promised [19, 6, 13];3 code.

4 General Construction

The essential ideas about constructing algebraic geometry (AG) codes in the previous sections are as
follows:

1. We work over a vector space ;" with ¢ a prime power. Take our message space M to be a subspace
of the m-variable polynomials on F;". Then, our message words can be viewed as elements of ng"‘ M
(coordinates of v € M in some basis), giving k = dim M.

2. To send p € M, we send its the result of its evaluation on a special subset of F}’, a variety
S = V(Rl, cen ,Rk) Then, n = |S|

13-2

3. We can find the minimum distance by an algebraic method using resultants. Our selections of M
and S are made to get the best distance we can.

Constructions for the first family of such codes came riding on discoveries in algebraic geometry and
number theory, and were very complex (due to Tsafsman, Vladuts, and Zink). Thereafter, Garcia and
Stichtenoth made a considerably simplified construction. We present a derivative of this construction
described by Pellikaan, Stichtenoth, and Torres. Shum recently discovered an O(n?)! for both a encoding
and decoding algorithm. 2

For this construction, we will take ¢ = p?, p prime. We will use two functions F, — F,: the trace Tr
and the norm NN, defined as follows:

N(z) = 2Pt Tra = 2P + z.

The fact that both of these functions map from [, to the subfield I, is a simple exercise. In addition,
the trace is linear; this implies that it is a “p — 1” map. In other words, the inverse image of any point
x € F}, consists of exactly p points.

To construct S = S, label the coordinates of F* as x1, ...,z Let Ri(xi,wiv1) = Tragyqr — évr((”;ii)f,
and then we can define S,, = V(R1,...,Rn—1). Next, we inductively derive a lower bound for S in

terms of ¢ and m. The claim is that |S;| > p’(p — 1). Instead of dealing with S’, we will work with a
subset defined so:

N(x;
Siy1 2{xeFy : Tra; #0,Traj ., = Tiij)
j

Vi<j<i+1}=5.

In the base case, m = 1, we just have the requirement Trx; # 0; since the trace is p — 1, the size of
the inverse image of 0 is p, leaving p(p — 1). Compared to S;, S;+1 has an extra variable z; 1, and the
constraints Trx; 11 # 0 and Trz; 11 = %?) For any fixed assignment of (x1, ..., z;), there are p values
of z;41 that satisfy both of the constraints. By induction, the claim follows.

One might wonder why we obtained a lower bound rather than an upper bound (since we said we’re
trying to minimize |S], relatively). However, given this lower bound, we will now produce the maximal
message size and distance to match, and everything will work.

We will pick some polynomials as a basis for M (although we won’t specify what they are exactly).
Call this basis p1,...,pr € Fylx1, ..., 2y]; we will take them so that they have some helpful properties.
We will associate with every p € Fy[z1,. .., 2] an order ords(p) with respect to S that behaves like a
degree of a polynomial. In particular,

ords(P+ Q) < max(ords(P),ords(Q))
ords(PQ) = ords(P)+ ords(Q)
#zerosof Pon S < ordg(P), if P #0.

A possible construction for this order is to take the resultant of P together with all R(x;, x;11)-

I believe the following few paragraphs contain some incorrect statements.

The order permits us to make the p; quite structured. For instance, if we have p and ¢ linearly
independent, of the same order, one can clearly* replace them by p’, ¢’ (having the same span) such that
ords(p’) = ords(p) and ords(q') < ords(q). Thus, we can take our basis elements in increasing order,
and the lower bound on |S| =n’ > p™(p — 1) permits us to take them so that

ords(p;) <i+p™.

10(n?) = O(n210g®M n) is just a way to neglect a constant log power.

2Thanks are also due to Sergey Yekhanin for his help in understanding this construction.

3It’s not clear that this is a polynomial, but we treat it as such for the purposes of the construction.

41f one thinks of polynomial degrees, this statement is trivial. Since our orders are defined to behave exactly the same,
so is this.

13-3

So, the maximum total order { we could end up reaching if we take a basis of k elements is k + p™.

.. somehow make conclusion that we can get [n',k,n’ — t], code.

Note that although our n’ isn’t well-defined, it has a lower bound, so we can throw out some coor-
dinates to get a [n, k,n — t], with n = p"(p — 1). What is ¢ going to be?

5 Decoding
This is very brief summary of the approach to decoding such codes. It turns out that the abstract
Welch-Berlekamp construction can be adapted to this case. The key idea is to use a prefix py,....p;

of the basis sequence as the error-locator function. The properties of the order allow us to proceed
smoothly through the construction.

References

[1] Jonathan Kelner, Algebraic Geometry Codes: Class notes for 6.897, 2002.

13-4

