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6.895 Essential Coding Theory	 September 27, 2004 

Lecture 6 
Lecturer: Madhu Sudan	 Scribe: Kyomin Jung 

Remark: We defer the proof of the next statement to some later lecture.(it occurred in the proof of

Plotkin bound in the last lecture):

if x1, . . . , xm � Rn satisfy � i ∈
= j, < xi, xj >� 0 then, m � 2n. 

1 Overview 

In this lecture we will examine some topics of decoding codes. Especially we will study Welch-Berlekamp 
algorithm, an error detecting decoding algorithm for Reed Solomon Codes(RS Codes). 

2 Decoding linear codes 

When we encode or decode linear codes, the some problems of finding efficient algorithm arise. 

•	 Encoding codes: by multiplying the generator matrix, complexity of encoding any linear code is 
O(n2).1 

•	 Detecting errors : For any linear codes, if the number of errors is less than d, we can detect errors 
in O(n2) since it only involves multiplication by H , the error check matrix. 

•	 Decoding from erasures 

•	 Decoding from erroneous codes: This is one of the main topics in codes decoding and in this lecture 
we will cover one algorithm for RS codes decoding. 

3 Decoding from erasure 

Given a generator matrix G, and a codeword y � (
� 

≤{?})n where ‘?� represents an erasure,

Goal: find x such that xG is consistent with y.

Note that if yi ∈
=?, (xG)i = x(Gi) = yi because xG is consistent with y. ( Here, Gi refers to the ith 
column of G ) 
Now construct G� consisting of such ith columns of G, and y� consisting of non ? elements of y. If the 
number of erasure is less than d, than because d � n− k+ 1, we can obtain unique x such that xG� = y . 
Then this is the required x. 

4 Welch-Berlekamp algorithm for RS codes decoding(’86) 

4.1 Brief history for RS codes decoding 

•	 1958,1959 - BCH codes were discovered. 

•	 1960 - Peterson gave a polynomial time algorithm for decoding BCH codes. 

•	 1963 - Gorenstein Zierler saw that BCH codes and RS codes have a common generalization. And 
the decoding algorithm extends to more general situation. 

•	 1968 - Berlekamp, Massey gave more efficient algorithm to decode BCH, RS codes. 

1 Some codes have lower encoding complexity. For example there exists an O(n(logn)O(1)) algorithm for encoding RS 
codes. There even exist some linear-time encoding codes 
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4.2 Error-locator polynomial 

Let’s recall the RS decoding problem. In this problem inputs are pairwise distinct �i’s (i = 1 . . . n) and 
a codeword y = (y1, . . . , yn) � Fn . Now our goal is to find a polynomial P over F such that P has degree 
less than k and (the number of i’s s.t. P (�i) ∈ 2 

n−k = yi) � d−1 = 
2 . Note that the coefficients of P are 

the encoded information. 
To solve this problem, we may think of an indicator for the i’s where error occurred. To this end, 

we will define a Error-locator polynomial E(x). E(x) will be a polynomial over F such that E(�i ) = 0 
= P (�i) and the degree of E is less than or equal to n−k .if yi ∈ 2 

Claim 1 Error locator polynomial exists. 

Proof 
Let S = {�i|P (�i) ∈= yi} 
Then let E(x) = 



�i �S (x − �i).∀ 

Now, define N(x) a polynomial over F by N(x) = E(x)P (x). Then E(x) and N(x) have following 
properties. 

• deg(E) � n−k 
2 

• E ∈= 0 

n+k • deg(N) � n−k + (k − 1) = 
2 − 1

2 

• �i N(�i) = E(�i)yi 

N • = P
E 

The proofs for the above properties are straightforward. Now we introduce Welch-Berlekamp Algo­

rithm. it uses above properties of E and N . 

4.3 Welch-Berlekamp Algorithm 

Welch-Berlekamp Algorithm 
Find two polynomials E0(x), N0(x) such that 

1. degE0 = fracn − k2, the highest coefficient of E0 is 1. 

n+k2. degN0 � n−k + (k − 1) = 
2 − 1

2 

3. �i N0(�i) = E0(�i)yi 

We can find these E0 and N0 using n linear equations of 3) over n−k + n+k = n unknown coefficients 
2 2 

of E0 and N0. It can be performed in O(n3) time. 
Let the output of this algorithm be N0 .

E0 

Lemma 2 If (N1, E1) and (N2, E2) are two solutions satisfying above 1), 2), 3), then 

N1 N2 
= (1)

E1 E2 
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Proof 
For all i, Nj (�i) = Ej (�i)yi. 

If yi ∈= 0, we obtain 
N1(�i )E2(�i) = N2(�i)E1(�i) (2) 

by multiplying N1(�i) = E1(�i)yi and E2(�i)yi = N2(�i) side by side.

If yi = 0, N1(�i) = N2(�i) = 0. So (2) still holds.

Therefore (2) holds for all i.

Then because N1E2 and N2E1 have degrees less than n, they must be identical.∀


Now, it can be easily checked that for some polynomial R(x) with degree n−k −deg(E) , (E(x)R(x), N(x)R(x))
2 

N ·Ris one solution for 1), 2), 3). And by definition of N(x), it also can be easily checked that 
E·R = P . So 

for any solution (N0, E0) of 1), 2), 3), N0 = P as expected. 
E0 

Abstracting the algorithm 

In this section, we will try to generalize the condition given for the Welch-Berlekamp algorithm. When 
we consider E,N ,P of Welch-Berlekamp algorithm, E is an element of set A of all the polynomials with 

n+kdegree n−k or less. Similarly N is an element of set B of all the polynomials with degree 
2 − 1 or 

2 
less, and P is an element of set C of all the polynomials with degree k − 1 or less. 

Then the problem we need to solve is, 

Given (A, B, C) and y = (y1, y2, . . . , yn) such that y is (in some sense) close to some element of C, 
Find E � A , N � B such that E ∈= 0 and �i Eiyi = Ni. 

More precise description and analysis of this generalization will be given in the next lecture. 
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