
Today

• Asymptotically good codes.

• Random/Greedy codes.

• Some impossibility results.
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Rate and Relative Distance

Recall the four integer parameters

• (Block) Length of code n

• Message length of code k

• Minimum Distance of code d

• Alphabet size q

Code with above parameters referred to as

(n, k, d)q code. If code is linear it is an

[n, k, d]q code.

(Deviation from standard coding non-linear

codes are referred to by number of codewords.

so a linear [n, k, d]q with the all zeroes word
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deleted would be an (n, qk−1, d)q code, while

we would have it as an (n, k − ε, d)q code.)

Today will focus on the normalizations:

• Rate R
def
= k/n.

• Relative Distance δ
def
= d/n.

Main question(s): How does R vary as

function of δ, and how does this variation

depend on q?
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Impossibility result 1: Singleton Bound

Note: Singleton is a person’s name! Not

related to proof technique. Should be called

”Projection bound”.

Main result: R + δ ≤ 1.

More precisely, for any (n, k, d)q code, k+d ≤

n + 1.

Proof: Take an (n, k, d)q code and project on

to k − 1 coordinates. Two codewords must

project to same sequence (PHP). Thus these

two codewords differ on at most n − (k − 1)

coordinates. Thus d ≤ n − k + 1.

c©Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 4



Impossibility result 2: Hamming Bound

Recall from lecture 1, Hamming proved a

bound for binary codes:

Define Volq(n, r) to be volume of ball of

radius r in Σn, where |Σ| = q.

Then Hamming claimed 2k · Vol2(n, (d −

1)/2) ≤ 2n.

Asymptotically R + H2(δ/2) ≤ 1.

q-ary generalization:

qk · Volq(n, (d − 1)/2) ≤ qn.

Asymptotically R + Hq(δ/2) ≤ 1, where

Hq(p) = −p logq p − (1 − p) logq(1 − p) +

p logq(q − 1).
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Question: Are these bounds in the right

ballpark?

If bounds are tight, it implies there could

be codes of positive rate at δ = 1. Is this

feasible? Will rule this out in the next few

lectures.

If bounds are in the right ballpark, there exist

codes of positive rate and relative distance.

Is this feasible? YES! Lets show this.
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The random code

Recall the implication of Shannon’s theorem:

Can correct p fraction of (random) error, with

encoding algorithms of rate 1−H(p). Surely

this should give a nice code too? Will analyze

below.

Code: Pick 2k random codewords in {0, 1}n.

Lets analyze distance.
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The random code

Lets pick c1, . . . , cK at random from {0, 1}n

and consider the probabilty that they are all

pairwise hope they are at distance d = δn.

Let Xi be the indicator variable for the event

that the codeword ci is at distance less than

d from some codeword cj for j < i.

Note that the probability that Xi = 1 is at

most (i − 1) · 2H(δ)·n/2n.

Thus the probability that there exists an i such

that Xi = 1 is at most
∑K

i=1(i−1)·2H(δ)−1·n.

The final quantity above is roughly

2(2R+H(δ)−1)·n and thus we have that we

can get codes of rate R with relative distance

δ provided 2R + H(δ) < 1.
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A better random code

The bound we have so far only says we can

get codes of rate 1
2 as the relative distance

approaches 0. One would hope to do better.

However, we don’t know of better ways to

estimate either the probability that Xi = 1,

or the probability that {∃i | Xi = 1}.

Turns out, a major weakness is in our

interpretation of the results. Notice that

if Xi = 1, it does not mean that the code

we found is totally bad. It just means that

we have to throw out the word ci from our

code. So rather than analyzing the probability

that all Xis are 0, we should analyze the

probability of the event
∑K

i=1 Xi ≥ K/2. If

we can bound this probability away from 1 for
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some K, then it means that there exist codes

with K/2 codewords that have distance at

least d. Furthermore if the probability that

XK = 1 is less than 1/10, we have that the

probability that
∑K

i=1 Xi > K/2 is at most 1
5

(by Markov’s Inequality) and so it suffices to

have E[XK] = K2(H(δ)−1)·n ≤ 1
10. Thus, we

get that if R + H(δ) < 1 then there exists a

code with rate R and distance δ.

In the Problem Set, we will describe many

other proofs of this fact.
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