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This week’s Topics 

Shannon’s Work. 

•	 Mathematical/Probabilistic Model of 
Communication. 

•	 Definitions of Information, Entropy, 
Randomness. 

•	 Noiseless Channel & Coding Theorem. 

•	 Noisy Channel & Coding Theorem. 

•	 Converses. 

•	 Algorithmic challenges. 

Detour from Error-correcting codes? 
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Goals/Options 

•	 Noiseless case: Channel precious 
commodity. Would like to optimize usage. 

•	 Noisy case: Would like to recover message 
despite errors. 

•	 Source can “Encode” information. 

•	 Receiver can “Decode” information. 

Theories are very general: We will describe 
very specific cases only! 
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Shannon’s Framework (1948)


Three entities: Source, Channel, and

Receiver. 

Source: Generates “message” - a sequence 
of bits/ symbols - according to some 
“stochastic” process S. 

Communication Channel: Means of passing 
information from source to receiver. May 
introduce errors, where the error sequence 
is another stochastic process E. 

Receiver: Knows the processes S and E, but 
would like to know what sequence was 
generated by the source. 

c	 2�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 

Noiseless case: Example 

•	 Channel transmits bits: 0 ∞ 0, 1 ∞ 1. 
1 bit per unit of time. 

•	 Source produces a sequence of independent 
bits: 0 with probability 1 − p and 1 with 
probability p. 

•	 Question: Expected time to transmit n 
bits, generated by this source? 
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Noiseless Coding Theorem (for Example) 

Let H2(p) = −(p log2 p+ (1 −p) log2(1 −p)). 

Noiseless Coding Theorem: Informally, 
expected time ∞ H(p) · n as n ∞ ≤. 

Formally, for every � > 0, there exists n0 s.t. 
for every n ∃ n0,


�E : {0, 1}n ∞ {0, 1}� and D : {0, 1}� ∞

n{0, 1} s.t. 

•	 For all x ⊆ {0, 1}n,D(E(x)) = x. 

•	Ex[|E(x)|] � (H(p) + �)n. 

Proof: Exercise. 
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Binary Entropy Function H2(p) 

•	 Plot H(p). 

•	 Main significance? 

− Let B2(y, r) = {x ⊆ {0, 1}n|�(x, y) � 
r} (n implied). 

−	 Let Vol2(r, n) = |B2(0, r)|. 
−	 Then Vol2(pn, n) = 2(H(p)+o(1))n 
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Entropy of a source 

•	 Distribution D on finite set S is D : S ∞ 
[0, 1] with D(x) = 1. x�S 

•	 Entropy: H(D) = −D(x) log2 D(x). x�S 

•	 Entropy of p-biased bit H2(p). 

•	 Entropy quantifies randomness in a 
distribution. 

•	 Coding theorem: Suffices to specify entropy 
# of bits (amortized, in expectation) to 
specify the point of the probability space. 

•	 Fundamental notion in probability/information 
theory. 
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Noisy Case: Example 

•	 Source produces 0/1 w.p. 1/2. 

•	 Error channel: Binary Symmetric Channel 
with probability p (BSCp), transmits 1 bit 
per unit of time faithfully with probability 
1 − p and flips it with probability p. 

•	 Goal: How many source bits can be 
transmitted in n time units? 

− Can permit some error in recovery. 
− Error probability during recovery should 

be close to zero. 

•	 Prevailing belief: Can only transmit o(n) 
bits. 
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Noisy Coding Theorem (for Example) 

Theorem: (Informally) Can transmit (1 − 
H(p)) · n bits, with error probability going 
to zero exponentially fast. 

(Formally) �� > 0,�� > 0 s.t. for all n: 

Let k = (1 − H(p + �))n. Then �E : 
n	 ∞{0, 1}k ∞ {0, 1}n and �D : {0, 1}

{0, 1}k s.t. 

Pr [D(E(x) + �) ≈= x] � exp(−�n), 
�,x 

where x is chosen according to the source and 
� independently according to BSCp. 

�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 9 

Proof of Lemma 

• Will fix x ⊆ {0, 1}k and E(x) first and pick 
error � next, and then the rest of E last! 

•	 � is Bad if it has weight more than (p+ �)n. 

Pr[�Bad] � 2−�n 

(Chernoff bounds). 

• x� Bad for x, � if E(x�) ⊆ B2(E(x)+�, (p+ 
�)n). 

Pr [x �Bad for x, �] � 2H(p+�)n/2n 

E(x�) 

� 2k+H(p)·n−n•	 PrE[�x� Bad for x, �] 

c�Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 11 

The Encoding and Decoding Functions 

• E chosen	 at random from all functions 
nmapping {0, 1}k ∞ {0, 1} . 

•	 D chosen to be the brute force algorithm 
- for every y, D(y) is the vector x that 
minimizes �(E(x), y). 

•	 Far from constructive!!! 

•	 But its a proof of concept! 

•	 Main lemma: For E,D as above, 
the probability of decoding failure is 
exponentially small, for any fixed message 
x. 

•	 Power of the probabilistic method! 
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•	 If � is not Bad, and no x� ≈= x is Bad for 
x, then D(E(x) + �) = x. 

•	 Conclude that decoding fails with 
probability at most e−�(n), over random 
choice of E, � (for every x, and so also if x 
is chosen at random). 

•	 Conclude there exists E such that encoding 
and decoding lead to exponentially small 
error probability, provided k+H(p)·n ∈ n. 
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Converse to Coding Theorems


•	 Shannon also showed his results to be tight. 

•	 For noisy case, 1−H(p) is the best possible 
rate ... 

•	 ... no matter what E, D are! 

•	 How to prove this? 

•	 Intuition: Say we transmit E(x). W.h.p. 
# erroneous bits is ≥ pn. In such case, 
symmetry implies no one received vector is 

nlikely w.p. more that 
pn ≥ 2−H(p)n . To 

have error probability close to zero, at least 
2H(p)n received vectors must decode to x. 
But then need 2k � 2n/2H(p)n . 
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Importance of Shannon’s Framework 

•	 Examples considered so far are the baby 
examples! 

•	 Theory is wide and general. 

•	 But, essentially probabilistic + “information­

theoretic” not computational. 

•	 For example, give explicit E! Give efficient 
D! Shannon’s work does not. 

Formal proof of the Converse 

•	 � Easy if weight � (p−�)n. Pr�[� Easy ] � 
exp(−n). For any y of weight ∃ (p − �)n, 

2−H(p−�)nPr[� = y] � . 

n =•	 For x ⊆ {0, 1}k let Sx ∀ {0, 1}
{y|D(y) = x}. Have |Sx| = 2n . x 

•	 Pr[ Decoding correctly] 

= 2−k Pr[� = y − E(x)] 
x�{0,1}k y�Sx


= Pr[� Easy]+2−k Pr[� = y−E(x)|�Hard 
x y�Sx 

2−H(p)n= exp(−n) + 2−k · · 2n


= exp(−n)
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More general source 

•	 Allows for Markovian sources. 

•	 Source described by a finite collection of 
states with a probability transition matrix. 

•	 Each state corresponds to a fixed symbol 
of the output. 

•	 Interesting example in the original paper: 
Markovian model of English. Computes 
the rate of English! 
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More general models of error


•	 i.i.d. case generally is a transition matrix 
from � to �. (�, � need not be finite! 
(Additive White Gaussian Channel). Yet 
capacity might be finite.) 

•	 Also allows for Markovian error models. 
May be captured by a state diagram, with 
each state having its own transition matrix 
from � to �. 
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Contrast with Hamming 

•	 Main goal of Shannon Theory: 

−	 Constructive (polytime/linear-time/etc.) 
E, D. 

− Maximize rate = k/n where E : 
{0, 1}k ∞ {0, 1}n . 

− While minimizing Perr = Prx,�[D(E(x)+ 
�) ≈= x] 

•	 Hamming theory: 

− Explicit description of {E(x)}x. 
− No focus on E, D itself. 
−	 Maximize k/n and d/n, where d = 

minx1,x2{�(E(x1), E(x2))}. 

•	 Interpretations: Shannon theory deals 
with probabilistic error. Hamming with 
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General theorem


•	 Every source has a Rate (based on entropy 
of the distribution it generates). 

•	 Every channel has a Capacity. 

Theorem: If Rate < Capacity, information 
transmission is feasible with error decreasing 
exponentially with length of transmission. If 
Rate > Capacity, information transmission is 
not feasible. 
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adversarial error. Engineering need: Closer 
to Shannon theory. However Hamming 
theory provided solutions, since min. 
distance seemed easier to analyze than Perr. 
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